

Crowd-Al Camera Sensing in the Real World

Ubicomp 2018, Singapore / October 8-12

Anhong Guo, Anuraag Jain, Shomiron Ghose, Gierad Laput, Chris Harrison, Jeffrey Bigham

Carnegie Mellon

How many stools are occupied?

AAAA

Are any of No

Are any of the sofa's available?

How many people are seated outside?

How many empty cups are there?

Current Solutions

Specific

Affordable

Flexible

Crowd-Al Systems

0.0.

Redo

Your mission is to **find and label** the presence and absence of curb ramps at intersections.

> ogress: u have finished 0 out o

by 1 by 0 ou've submitted 8 curb ramp labels and missing curb ramp labels.

 Keyboard Shortcuts:

 ESC:
 Cancel drawing

 Z / Shift+Z: Zoom in / Zoom out

Tohme, Hara et al. 2014

Zensors, Laput et al. 2015

VizLens, Guo et al. 2016

11

Logout

Welcome back, test

Current time is Feb. 6, 2018, 2:27 p.m.

Door Usage

Trash Can Usage*

Logout

Welcome back, test

Current time is Feb. 6, 2018, 2:27 p.m.

Restaurant line*

Door Usage

Trash Can Usage*

13

17

Zensors++ Architecture

Evaluation Deployment

- Evaluation deployment: 17 users, 4 weeks, 63 sensors, 937,228 answers
- Occupations: department and program directors, administrative coordinators, facility and lab managers, professors and students
- Locations: homes, offices, labs, cafes, food courts, parking lots, classrooms, workshops, and shared kitchens

19

Applications of Zensors++ How do end users apply crowd-Al camera sensing in their domestic and work lives? What are the perceived value?

Are there people in the classroom?

Is there any paper or mail here?

Is anyone using the tools or equipment?

How many people [...] on the benches?

How many cars are parked here?

Is the kitchen fridge open?

Is the coffee machine in use?

Is there anyone in the glassed-in room? Is anything written on the whiteboard?

How many people are sitting [...]?

How many cars do you see?

Is there a gathering of people [...]?

Is someone sitting on this furniture?

How many pedestrians do you see?

Use of Data

How do end users apply crowd-Al camera sensing in their domestic and work lives?

- Users in commercial settings more interested in longitudinal data
- Users in personal capacity cared more about in-the-moment state

How many people are in the line [...]?

Proxy Questions

How do end users apply crowd-Al camera sensing in their domestic and work lives?

- Alternative framing that was context free to answer a different question
- Future work to support users define and formulate questions

Perceived Value

What are the perceived value?

Participants in professional roles are willing to pay large amounts for

Is there any paper or mail here?

How many people are in the line [...]?

questions that directly complemented or augmented existing practices

No pay, prefer business

Thousands annually

Performance of Zensors++

What is the accuracy, latency, cost, and automation that can be achieved in real world deployments?

What is the accuracy, latency, cost, and automation that can be achieved in real world deployments?

- ~80% for yes/no questions, 0.2 unit error for count questions
- Sources of errors: Malicious crowd behavior Ill-defined user questions

Latency

What is the accuracy, latency, cost, and automation that can be achieved in real world deployments?

- Worker labeling duration: 5.8s for yes/no, 6.6s for count
- User receiving answer duration (crowd): First Answer: 2 mins Majority Vote: 5 mins
- User receiving answer duration (hashing): zero-latency

Hashing

What is the accuracy, latency, cost, and automation that can be achieved in real world deployments?

- Hashing rate: 74.4% (697,345) out of 937,228 answers Near-zero latency and cost, saving us approximately \$17,500
- Hashing accuracy: 99% Error cause: selected region was large, question asking about small changes

Cost

What is the accuracy, latency, cost, and automation that can be achieved in real world deployments?

- Average of \$0.006 per answer \$6,069 for crowd labels for 937,228 answers
- Average of 2.5 labels per answer
- Average per-day cost: \$2.4 for yes/no, \$4.5 for count 60% hashed for yes/no, 45% hashed for count Might be that count questions inherently more dynamic and complex

Saved \$1,127 in crowd cost, demonstrating effectiveness in voting scheme

world deployments?

- 60% cost < \$2 per day
- Cost can be further reduced
- Suggest long term viability of many use cases

What is the accuracy, latency, cost, and automation that can be achieved in real

Future Work

- Applying private crowds Higher quality answers, less need for majority voting
- Zensors++ dataset Transfer learning across environments, similar question types
- Deeper exploration of sharing (devices, sensors, data) Cameras aiming outdoors can be utilized by third-parties The ubiquity of cameras offers unique opportunities

Long-term crowd engage with users to refine questions, curate automation

Sequential examples, as apposed to one-off questions, e.g., VQA dataset

C Cropping

user questions based on camera streams users' perceived value

B

FTP

SMS & Email

User Touchpoints

Crowd-Al Camera Sensing in the Real World

Anhong Guo, Anuraag Jain, Shomiron Ghose, Gierad Laput, Chris Harrison, Jeffrey Bigham

anhongg@cs.cmu.edu guoanhong.com

Sponsored by:

