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How many people are seated outside?
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Crowd -Al Systems
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Zensors++ Architecture
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Zensors++ Architecture Reducing Redundancy
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Zensors++ Architecture
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Zensors++ Architecture Sensor Authoring Support
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Evaluation Deployment

e Evaluation deployment: 1/ users, 4 weeks, 63 sensors, 937,228 answers

® Occupations: department and program directors, administrative
coordinators, facility and lalb managers, professors and students

® | ocations: homes, offices, lalbs, cafes, food courts, parking lots,
classrooms, workshops, and shared kitchens
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Applications of Zensors++

How do end users apply crowd-Al camera sensing In
their domestic and work lives?
What are the perceived value?



Do you see a motorcycle here? Is the light on? Are there people in the classroom? Do you see any part of a car here?

» - .
N I I B -
3 / . )
} o o # ‘ ‘ | Y
teoslrt - / T o
y 5 s ‘ v
N S : J LY ~
S
- ]
4 . J!1
»




Is the kitchen fridge open? Is the coffee machine in use? Is there a gathering of people[...]? Is someone using a printer?
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Use of Data

How do end users apply crowd-Al
camera sensing in their domestic and
work lives?

e Users in commercial settings more
Interested in longitudinal data

e Users in personal capacity cared
more about in-the-moment state

How many people are in the line[...]?
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Proxy Questions

How do end users apply crowd-Al
camera sensing in their domestic and
work lives?

® Alternative framing that was
context free to answer a different
question

e Future work to support users
define and formulate questions

Do you see a motorcycle here?
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Perceived Value

What are the perceived value?

® Participants In professional roles are willing to pay large amounts for
questions that directly complemented or augmented existing practices

Personal use: $1-10 No pay, prefer business Thousands annually

Is there any paper or mail here? How many people are in the line|...]? Is the trashcan full [...]?
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Performance of Zensors++

What Is the accuracy, latency, cost, and automation that
can be achieved in real world deployments?



Accuracy

What is the accuracy, latency, cost, and automation that can be achieved in real
world deployments?

e ~80% for yes/no questions, 0.2 unit error for count questions

® Sources of errors:
Malicious crowd behavior
ll-defined user questions
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Latency

What is the accuracy, latency, cost, and automation that can be achieved in real
world deployments?

e Worker labeling duration: 5.8s for yes/no, 6.6s for count

e User receiving answer duration (crowd):
First Answer: 2 mins
Majority Vote: 5 mins

e User receiving answer duration (hashing):
zero-latency
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Hashing

What is the accuracy, latency, cost, and automation that can be achieved in real
world deployments?

e Hashing rate: 74.4% (697,345) out of 937,228 answers
Near-zero latency and cost, saving us approximately $17,500

e Hashing accuracy: 99%
Error cause: selected region was large,
question asking about small changes
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Cost

What is the accuracy, latency, cost, and automation that can be achieved in real
world deployments?

e Average of $0.006 per answer
$6,0069 for crowd labels for 937,228 answers

® Average of 2.5 labels per answer
Saved $1,127 in crowd cost, demonstrating effectiveness in voting scheme

e Average per-day cost: $2.4 for yes/no, $4.5 for count
60% hashed for yes/no, 45% hashed for count
Might be that count questions inherently more dynamic and complex
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Cost

What is the accuracy, latency, cost, and automation that can be achieved in real

world deployments?
e 60% cost < $2 per day
® Cost can be further reduced

® Suggest long term viability
of many use cases
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Future Work

® Applying private crowds
Higher quality answers, less need for majority voting
Long-term crowd engage with users to refine questions, curate automation

® Zensors++ dataset
Sequential examples, as apposed to one-off questions, e.g., VQA dataset
Transfer learning across environments, similar question types

e Deeper exploration of sharing (devices, sensors, data)
Cameras aiming outdoors can be utilized by third-parties
The ubiquity of cameras offers unique opportunities
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Zensors++

® A crowd-Al sensing system to answer natural language
user questions based on camera streams

e Crowd workers could provide labels quickly and at scale

® Importance of hashing for reducing cost and latency

® Many question sensors are already within the bounds of
users’ perceived value
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