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Smart appliances with built-in cameras, such as the Nest Cam and Amazon Echo Look, are becoming pervasive. They hold
the promise of bringing high fidelity, contextually rich sensing into our homes, workplaces and other environments. Despite
recent and impressive advances, computer vision systems are still limited in the types of sensing questions they can answer,
and more importantly, do not easily generalize across diverse human environments. In response, researchers have investigated
hybrid crowd- and AI-powered methods that collect human labels to bootstrap automatic processes. However, deployments
have been small and mostly confined to institutional settings, leaving open questions about the scalability and generality of
the approach. In this work, we describe our iterative development of Zensors++, a full-stack crowd-AI camera-based sensing
system that moves significantly beyond prior work in terms of scale, question diversity, accuracy, latency, and economic
feasibility. We deployed Zensors++ in the wild, with real users, over many months and environments, generating 1.6 million
answers for nearly 200 questions created by our participants, costing roughly 6/10ths of a cent per answer delivered. We
share lessons learned, insights gleaned, and implications for future crowd-AI vision systems.
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1 INTRODUCTION
Cameras are becoming pervasive in civic and commercial settings, and are moving into homes with devices like
the Nest Cam and Amazon Echo Look. Owing to their high resolution and wide field of view, cameras are the
ideal sensors to enable robust, wide-area detection of states and events without having to directly instrument
objects and people. Despite this unique advantage, camera streams are rarely actionalized into sensor data, and
instead are merely used to view a remote area.
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Fig. 1. Example question sensors created by our participants, with regions of interest highlighted on the full camera image.
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This trend is slowly changing with consumer home cameras offering rudimentary computationally-enhanced
functions, such as motion [24] and intruder detection [53]. Perhaps most sophisticated among these consumer
offerings is the Amazon Echo Look, which can offer fashion advice [1]. In commercial and municipal camera
systems [50], computer vision has been applied to e.g., count cars and people [20, 52], read license plates [21],
control quality [60], analyze sports [13], recognize faces [59] and monitor road surfaces [27]. In general, these
computer-vision-powered systems require extensive training data and on-site tuning to work well. For example,
FaceNet [56] achieved human-level face detection accuracy, but required a team of researchers to collect and
prepare over 100 million images for training. This is obviously impractical for the long-tailed distribution of
scenarios and the many bespoke questions users may wish to ask about their environments [15, 18, 35].
To flexibly adapt to new questions, researchers have created hybrid crowd- and artificial intelligence (AI)-

powered computer vision systems [19, 31, 36, 45]. Rather than requiring an existing corpus of labeled training data,
these systems build one on-the-fly, using crowd workers to label data until classifiers can take over. This hybrid
approach is highly versatile, able to support a wide range of end user questions, and can start providing real-time
answers within seconds [45]. However, prior work falls short of real-world deployment, leaving significant
questions about the feasibility of such crowd-AI approaches, both in terms of robustness and cost. Moreover, it is
unclear how users feel about such systems in practice, what questions they would formulate, as well as what
errors and challenges emerge. We focus on four main research questions:

• RQ1 (System): What system components and architecture are needed to support crowd-AI camera sensing
in real-time and at scale?

• RQ2 (Performance): What is the accuracy, latency, cost, and automation that can be achieved in real world
deployments?

• RQ3 (Applications): How do end users apply crowd-AI camera sensing in their domestic and work lives?
• RQ4 (Qualitative): What are the perceived value and privacy trade-offs?

To investigate these questions, we iteratively built Zensors++, a full-stack crowd-AI camera-based sensing
system with the requisite scalability and robustness to serve real-time answers to participants, in uncontrolled
settings, over many months of continuous operation. With an early prototype of the system, we performed a
discovery deployment with 13 users over 10 weeks to identify scalability problems and pinpoint design issues.
Learning from successes and failures, we developed an improved system architecture and feature set, moving
significantly beyond prior systems (including Zensors [45], VizWiz [16] and VizLens [31]). More specifically,
Zensors++ makes the following technical advances: (i) multiple queues to support crowd voting and dynamic
worker recruitment, (ii) a dynamic task pool that estimates the capacity of labelers for minimizing end-to-end
latency, and (iii) a hybrid labeling workflow that uses crowd labels, perceptual hashing, and continuously-evolving
machine learning models. With our final system, we conducted a second deployment with 17 participants, who
created 63 question sensors of interest to them (24 of which are illustrated in Figure 1). This study ran for four
weeks, resulting in 937,228 labeled sensor question instances (i.e., answers). We investigated the types and sources
of errors from e.g., crowd labeling, user-defined questions, and machine learning classifiers. These errors were
often interconnected, e.g., when users created questions that were difficult for crowd workers to answer, workers
were more likely to answer incorrectly, which in turn provided poor training data for machine learning, ultimately
leading to incorrect automated answers. Overall, this experience illuminated new challenges and opportunities in
crowd-AI camera-based sensing. We synthesize our findings, which we hope will inform future work in this area.

2 RELATED WORK
Our work is related to several areas in HCI, AI and crowdsourcing, including environmental sensing, computer
vision and crowd-powered systems. We now review the most relevant work.
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2.1 Environment Sensing
There is a significant literature in HCI and Ubicomp that has outfitted homes, offices, public environments and
objects with sensors to detect various activities. Approaches for instrumentation vary both in density and the
classes of activities being monitored.

Most straightforward is special-purpose sensing, wherein a single specialized sensor is used to monitor a single
facet of an environment. For example, systems such as UpStream [44] and WaterBot [12] instrument a faucet
with an acoustic sensor to monitor water consumption. Similar special-purpose approaches have been applied to
HVAC systems using room-level temperature [43] and occupancy [57] sensors. Special-purpose sensors tend to
be robust for well-defined, low-dimensional sensing problems, but are difficult to generalize.

Alternatively, a network of sensors (i.e., a distributed sensing system) can be used to offer added generality by
enlarging the sensed area (e.g., occupancy sensing across a building) or by increasing fidelity through multiple
reinforced readings (e.g., detecting earthquakes using an array of sensors). These systems can be homogeneous
(e.g., many cameras) or heterogeneous (i.e., a mix of sensor types) [58, 62]. However, large numbers of sensors,
needed to obtain good coverage and accuracy, can carry a substantial financial, social and aesthetic cost.
To reduce the deployment cost of distributed sensing systems, researchers have explored infrastructure-

mediated sensing (e.g., powerlines [33, 64], plumbing [29], HVACs [55]), wherein a single sensor can detect an
environmental facet across a large context. Although more “universal” than the aforementioned approaches,
infrastructure-mediated sensing is still constrained by the class of infrastructure to which it is attached. Most
closely related to our approach is the notion of general-purpose sensing [45, 46], where a single, highly-capable
sensor can detect a wide range of events within a room.

2.2 Computer Vision and Crowd-Powered Systems
Computer vision has come closest to achieving general-purpose sensing, as cameras offer high-fidelity data
that can be processed to yield sensor-like feeds. However, achieving human-level abstractions and accuracy is a
persistent challenge, leading to the creation of computer vision and crowd-powered systems (e.g., [16, 31, 47]).

Crowdsourcing systems access “human intelligence” through online marketplaces such as Amazon Mechanical
Turk [2]. Prior work in general-purpose, visual sensing has relied entirely on crowdsourced answers. For instance,
VizWiz [16] had crowd workers answer visual questions from blind users using photos taken from a mobile
phone. The same mechanism has been applied to automate critical tasks in other domains, including managing
dialogue [39, 41, 48, 49] and promoting accessibility [31, 32, 36]. Unlike VizWiz and OMoby [51], we focus on
stationary cameras that answer human-defined questions over time, providing a continuous sensor feed.
Researchers have also mixed computer vision and crowd-powered approaches to create systems that learn

over time. For example, Legion:AR uses on-demand crowd labeling to train an HMM-based activity recognizer
[47]. Likewise, Flock [19] trains hybrid crowd-machine learning classifiers to enable fast prototyping of machine
learning models that can improve on both algorithmic performance and human judgment, accomplishing tasks
where automated feature extraction is not yet feasible. VATIC [61] uses crowd workers to annotate video with
labels and object bounding boxes, providing critical training data to bootstrap machine learning.
Finally, this work is most directly related to Zensors [45], our original system, which shares the same main

concept of using cameras and crowds to power end-user-authorable sensor feeds. In this work, we move from
proof of concept to large-scale deployment, coupled with comprehensive analyses to more deeply assess the
feasibility of crowd-AI visual sensing systems.

3 DISCOVERY DEPLOYMENT
Building on prior work, we created an initial, minimally-viable system comprised of (i) a scalable backend, (ii) a
web-based, user-facing, question authoring interface, and (iii) a labeling interface for crowd workers. The system
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also included (iv) an administrative interface for managing connected cameras and user accounts. Rather than
describing the many intermediate versions of Zensors++ created over many months of development, we instead
detail the final system in the next section. Here we briefly describe the Zensors++ interface as experienced by
end users.

To initialize a “question sensor”, users must first place a networked camera (e.g., WiFi, PoE) in an environment
of interest. Once the camera is in place and online, users can bind the camera to Zensors++. Through our web
interface, a user can select the camera from a personal list, highlight a region of interest on the camera’s image,
and ask a natural language question, e.g., “is the trashcan full?” The frequency at which the question sensor runs
is also specified (e.g., every five minutes). This completes the question sensor creation process. At the specified
interval, individual “question sensor instances” are processed by a backend. Initially “answers” are provided by
crowd workers, using majority voting for basic quality control. Once answers are decided, they are forwarded
to end-user applications. For example, users can setup notifications, e.g., send text message if “is the trashcan
full?” equals yes). Answer streams are also viewable through a web-based visualizer (e.g., trashcan utilization
over a month). Running exclusively on crowd power is not feasible long term, so Zensors++ caches all crowd
labels to serve as a corpus for training computer-vision based machine learning classifiers, which take over when
confident.

We used this initial system as a vehicle to run a “discovery deployment”, which ran for 10 weeks with 13 users,
who created a total of 129 question sensors. Participants could select from cameras we set up at our institution,
and were also offered cameras to set up themselves (e.g., at their home or office). Participants were given a short
tutorial explaining how to use the system. During this pilot deployment, we prompted participants by email to
log into the system every few days, iterate on their questions if need be, and report any bugs, issues or feature
requests. In this discovery deployment, the primary goal was to understand the challenges in deploying such a
system (RQ1) and assessing its performance (RQ2; e.g., accuracy, scalability, automation). We also gathered initial
user feedback (RQ3; e.g., question types, quality of answers, error modes). In total, the system delivered 661,090
answers to users over the ten-week period.

4 ZENSORS++
Our discovery deployment allowed us to iterate and strengthen our system design and implementation, which
we now describe in greater detail. We focus on distinguishing features, rather than covering every technical facet.

4.1 Compute
We deployed Zensors++ on Amazon Web Services (AWS) [8], implemented as a stateless Django [25] application.
Six vCPUs and 24 GiB of RAM were used for hosting the web user interface and crowd labeling system, which
sat behind an Elastic Load Balancer (ELB) [9] accelerated by ElastiCache [3]. Another vCPU and two GiB of RAM
was used for hosting an File Transfer Protocol (FTP) gateway. Forty vCPUs and 276 GiB of RAM were used for
image processing and machine learning. Two vCPUs and 8 GiB of RAM were used for system administration and
monitoring. In total, our processes consumed 49 vCPU cores and 310 GiBs of memory.

4.2 Cameras
Zensors++ was designed to work with most off-the-shelf camera systems capable of posting data to a network
service. For our study, we selected D-Link DCS 932L Wireless Day/Night cameras [23] (Figure 2A), available at
many stores for about $30 USD, offering 640 × 480px video with WiFi connectivity. These cameras upload data
via FTP to the Zensors++ backend, implemented in python using the pyftpdlib library (Figure 2B). To register a
new camera, our web frontend generates unique FTP credentials that bind a camera to a user’s account.
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Fig. 2. The system architecture of Zensors++ consists of four main components: user touchpoints (blue), image processing
pipeline (pink), labeling system (green), and data storage (grey).

Although the D-Link cameras were versatile and inexpensive, we encountered some limitations. First, some
users placed cameras facing out of windows, causing the camera’s infrared (IR) LEDs to reflect off the glass and
obscure images in dark contexts. As a simple solution, we disabled the IR LEDs by covering them with electrical
tape. The cameras also had a limited field of view, which sometimes made it difficult to ask questions across an
entire room. To emulate more expensive devices, we fitted our cameras with inexpensive, clip-on ($3) fisheye
lenses (intended for smartphones).

4.3 Question Sensor Authoring
Our web interface (Figure 2P) allows users to manage question sensors and share camera feeds with other users.
To create a question sensor, a user selects a camera from a personal list (e.g., backyard camera) and then drags a
bounding box (Figure 3A) to select a region of interest. Next, the user specifies the question they want answered
(e.g., “do you see a motorcycle here?”). They can also modify properties, such as the question type (e.g., Yes/No)
and the sensing frequency (e.g., every 5 minutes). Once launched, the user can edit, pause, resume, or delete the
question sensor at any time. Users can also view all of their question sensors’ live data, and explore a visualization
of historical data to perform retrospective analysis and sensemaking (Figure 3C).

4.4 Notifications
We learned early in the deployment that users were interested in alerts, especially for infrequent events, e.g.,
“is there a package on my doorstep?” To enable this for our participants, we created a web-based query builder
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Fig. 3. Screenshots of user interfaces. (A) End users highlight a region of interest in a camera image and add an associated
natural language question. (B) Crowd workers provide answers for user-defined “question sensors” given an image region of
interest. (C) End users can view real-time and historical data through visualizations.

that allows question sensors to be combined into logic statements with thresholds to trigger notifications. Upon
deployment, we quickly discovered that any incorrectly labelled question sensor instance (e.g., false positive)
would trigger a false notification, endangering user trust in the system’s accuracy. To mitigate this issue, we
incorporated hysteresis; the system only triggers a notification if it finds three or more continuous identical labels
for one state followed by three or more labels of another state. This approach protects against single errant
answers and ensures notifications have a high probability of being correct. However, this mechanism fails for
short-lived events, such as “is a person entering this door?”
Our notification system uses the Redis [11] in-memory data structure store on AWS to cache the recent

data points for scalability. We use Simple Email Service (SES) [5] for sending email notifications, and Simple
Notification Service (SNS) [6] for sending text messages (Figure 2Q).

4.5 Privacy Preservation
Since images of public and private places are shown to online crowd workers, it is important to de-identify
personal information to protect privacy. We implemented several mechanisms to mitigate this significant issue.
First, the cameras infrequently transmit low-quality images (640 × 480px) to our secure server. No video or audio
is captured. Second, we apply a state-of-the-art face detection algorithm [65] to obscure faces with a black box
(Figure 2E). Third, only small regions of interest are shown to crowd workers, allowing users to selectively reveal
areas of their environment (Figure 2C).

4.6 Redundant Images
Using fixed-view cameras that sampled as frequently as every 10 seconds meant that many images transmitted to
Zensors++ were redundant. This was especially true at night, when human activity decreases. To reduce labeling
cost, we use a perceptual image hashing algorithm [63] (64-bit) to compare each incoming image to previously
labeled images for that region of interest. If a match is found, we can simply co-opt an earlier human label for
essentially zero cost (Figure 2F).

During our discovery deployment, we tuned two factors in our image comparison pipeline to achieve a balance
between labeling cost and accuracy. The first parameter was the distance threshold between two image hashes.
Through repeated testing of different bit distances, we ultimately selected a threshold of zero (i.e, the two
perceptual hashes had to be identical bit-wise to be considered a match). The second parameter we optimized
was the “look-back period”. At first, we thought utilizing the entire history of a question sensor would be ideal,
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but we found that early answers tended to infill the hash space and prevent newer answers from being added to
the corpus. Moreover, if an early answer happened to be wrong, it could be copied forward innumerable times
with no way to recover. To counter these effects, we selected a look-back period of 48 hours. In the future, these
parameters could be automatically adjusted using periodic validation from the crowd.

4.7 Crowd Interface
High quality crowd-generated labels are crucial to the end user experience and futuremachine learning automation.
Our initial interface was specifically optimized for speed, heavily relying on keyboard shortcuts. However, from
user testing, we found that workers often fell into a rhythm and pressed the wrong key when a different image
appeared after a sequence of similar question sensors in a row, resulting in a non-trivial number of incorrect labels.
In response, we redesigned the crowd interface to have large buttons and no keyboard shortcuts (Figure 3B),
which forced a more deliberate selection.

Our crowd interface was implemented using the React JavaScript library [28] (Figure 2K) and we recruited
workers from Amazon Mechanical Turk (Figure 2J), paying one cent for each answer in batches of ten. Labeling
each question sensor instance took roughly three seconds, resulting in an hourly pay of approximately ~$10/hour.

4.8 Crowd Disagreement
Rather than relying on a single crowd worker to provide an answer for a question sensor instance, Zensors++
sources several answers which it fuses together to produce a more reliable and final “answer of record” (which
manifests in e.g., end user visualizations and triggers notifications). We used a simple majority voting mechanism
(Figure 2M). First we solicit two crowd answers; if they match (e.g., yes & yes) the final answer is recorded. If the
answers differ (e.g., no & yes), we tie break by soliciting a third and final answer (e.g., no & yes & no = no). In the
case of count questions, we take the median answer (e.g., 12 & 24 & 14 = 14).
To efficiently dispatch question sensor instances to crowd workers, Zensors++ uses message queues [10].

Question sensor instances are pulled in batches of ten to form a single Human Intelligence Task (HIT). In early
versions of the system, it was possible for a single crowd worker to answer the same question sensor instance
several times over multiple HITs, undermining multi-worker majority voting. To ensure that unique workers
cast votes, we switched to a three-queue setup implemented using Simple Queue Service (SQS) [7]. A question
sensor instance is first inserted into two “work queues” (Figure 2H) and then onto a third “disagreement queue”
(Figure 2L) if the first two answers do not match. To ensure unique workers for majority voting and prevent
queue starvation, the system pins a worker to a queue for a period of one hour. This practically eliminates the
possibility of having multiple votes from the same worker for a question sensor instance.

4.9 HITQueues
There is an inherent delay that exists between when a HIT is created and when it becomes available for crowd
workers, as reported in [40]. Rather than waiting for images to be ready before firing HITs, we apply a dynamic
task pool approach that estimates the capacity of labelers for minimizing latency (Figure 2I). We periodically
query the system for the number of queued images, currently open HITs and newly generated question sensor
instances, which are then all used as inputs to a weighted formula to determine the number of new HITs to
spawn. Aside from the three worker queues, we also implemented an “expired queue” for images that have grown
stale (and it is better to answer a more recent instance of a question sensor) and a “hash-hit queue” for images
not needing human labels. These two queues are used as retainers [14, 16] in the event that the main queues run
out of items or in cases of surplus labeler capacity.
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4.10 Crowd Reliability
In our discovery deployment, we only recruited crowd workers with greater than 95% assignment approval rate.
However, the repetitive nature of the work and constant availability of HITs lead to degraded worker attention.
There were also several malicious workers who exploited our early system’s limited safeguards during our
discovery deployment. To partially mitigate this issue, we created a set of gold standard question sensor instances,
which we randomly inserted into HITs. If a worker provided an incorrect answer, a warning pop-up appeared. As
we will discuss later in Results, even this intervention was insufficient.

4.11 Machine Learning
Our machine learning pipeline (Figure 2G) was built to automatically create classifiers specifically tuned for each
end user’s question and region of interest. The process starts by taking region of interest images and computing
a 2048-dimension embedding from ResNet-50 [37] (Figure 2D). This feature vector is stored for training and also
used as input to a classifier (Figure 2N) that predicts an answer for a question sensor instance. These embeddings
serve as input to a KNN [22] classifier for yes/no questions and a KNN regressor for count questions.

4.12 Promoting GoodQuestion Sensors
In our discovery deployment, we found the single greatest source of sensing inaccuracy was not from crowd
workers or machine learning, but rather end users themselves. We identified four distinct failure modes:

Poor image cropping (C): Creating a question sensor requires selection of a region of interest on a camera’s
feed. We found many cases where the selected region included too many distracting elements that were irrelevant
to the question being asked, adding cognitive overhead for crowd workers and noise for machine learning. We
also found instances where the cropped region was too tight, and only partially captured the question’s subject.
Ambiguous language (L): Users enter questions as free-form, natural language text. As a result, the system

encountered questions that were subjective and/or included ambiguous language difficult for crowd workers
to interpret. For example, “is the table messy?” is a matter of personal threshold. Variability in answers from
different crowd workers meant unpredictable data and difficulty in converging machine learning models.
Missing context (X): Users often have context about their environment and created questions that required

additional knowledge. For example,“is the coffee machine in use?” assumes a crowd worker knows what a
machine’s screen looks like when its in use vs. idle. A context free framing could be: “Is there a person in front of
the coffee machine?”
Poor image quality (Q): Finally, for some cases image quality was insufficient to enable reliable answers.

Sometimes this was because the camera was too far away, reducing the effective resolution, or the change was
too subtle. For example, “is it raining now?” was very hard to answer using our cameras.

We used these early findings to create an onboarding guide for our final system, which promotes the creation
of more effective question sensors. We also integrated an “I can’t tell” button into the crowd interface as a
mechanism to flag questions that were challenging to answer, prompting users to rephrase. We use the above
categorizations (C, L, X and Q) in Figure 4.

5 EVALUATION DEPLOYMENT
Our discovery deployment illuminated many technical issues (RQ1), the most interesting of which we have
described above. To more fully answer RQ2 (performance), RQ3 (applications) and RQ4 (qualitative feedback),
we conducted a second, large-scale deployment with our final Zensors++ implementation. We recruited 17 new
individuals (mean age 35, six female) through mailing lists and flyers. Their occupations included department and
program directors, administrative coordinators, facility and lab managers, professors and students. Participants
were given a tutorial on how to use the system and our onboarding guide on how to create good question sensors.
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Participants then created accounts on our web interface (Figure 3), and set up new or selected existing cameras
that were of interest to them. After a brief brainstorming exercise with the experimenter serving as a facilitator,
participants proceeded to create question sensors of their choosing.
During deployment, participants were encouraged to log in to their accounts, view real-time data, as well as

explore historical data with the visualization tool. We also scheduled a midpoint check-in with our participants
to gather initial feedback, and rectify any errors, perceived or actual. If participants were satisfied with their
question sensors, we enabled the notification feature, which allowed them to receive emails or text messages
based on simple triggers. At the conclusion of the deployment, we ran a formal exit interview, paying special
attention to motivations around the different sensors they created and the value they derived.
The deployment ran for four weeks, powering 63 participant-created question sensors across a variety of

locations, including homes, offices, labs, cafes, food courts, parking lots, classrooms, workshops, and shared
kitchens. Figure 1 provides visual examples of 24 participant-defined question sensors; Figure 4 provides a
compact, but full listing.

6 RESULTS & DISCUSSION
Across 63 question sensors powered for four weeks, Zensors++ achieved an average accuracy of ~80% for yes/no
questions, and was within 0.2 units (e.g., people, cars) on average for count questions. 74.4% of images had hash
hits, which means 25.6% of images went to the crowd for labeling. This resulted in an average crowd cost of
6/10ths of a cent per answer delivered. We now describe these results in greater detail, including implications for
future systems.

6.1 Scale (RQ2)
Over 4 weeks, Zensors++ answered 937,228 sensor question instances, powered by both crowd workers and our
automatic processes — an average throughput of 23 answers per minute. 606,903 individual labels were generated
by 231 crowd workers, resulting in a throughput of 15 crowd labels per minute. In total, the deployment generated
43 GB of images (stored on Amazon S3 [4]).

6.2 Raw Crowd Accuracy (RQ2)
We conducted a post-hoc evaluation to quantify the accuracy of crowd answers. To investigate this, we randomly
selected a subset of crowd-labeled question sensor instances (14,028 images). Three researchers then manually
provided high-quality, ground-truth labels for this dataset. These expert labelers had the advantage of superior
contextual understanding (e.g., able to see the whole image, not just the region of interest), as well as the ability
to view datasets over time (e.g., knowing min and max of answer distributions).
For count questions, we found a mean absolute error of 0.47 (SD=0.56) units, which is reasonably accurate.

However, for yes/no questions, we found a mean crowd accuracy of 62.8% (SD=26.0%). This low accuracy prompted
us to investigate if there was a subset of workers bringing down the average. However, we did not find any
obvious step function reduction in accuracy, and instead saw a continuous spectrum of crowd quality.

We noticed two types of malicious crowd behaviour. First were a subset of crowd workers who continuously
selecting the “I can’t tell” option when questions were clearly answerable. Second, we found a set of workers
who ignored our quality-control gold standard questions and warning pop-ups. Since we did not ban workers
identified as malicious, they were able to repeatedly abuse the system. In order to ensure crowd quality, we
recommend future systems employ continuous monitoring of crowd worker performance. To compensate for
this errorful data, and estimate performance with effective safeguards in place, we decided to drop labels from
the worst-performing 23 crowd workers (representing ~10% of our crowd workforce), which improved crowd
accuracy by 8%. Accuracies with and without crowd worker data dropped is reported in Figure 4.
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Fig. 4. Detailed statistics on all 63 question sensors from our evaluation deployment.
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Fig. 5. Yes/No question sensor accuracy when well formed
(gray bar), formulated as a proxy question (blue bar), and
when exhibiting four different error types (red bars).

Fig. 6. Histogram of end-to-end crowd latency. Median time
to first answer was 120 seconds, whilemedian time to answer
of record was 355 seconds.

6.3 Question Sensor Accuracy (RQ2)
Sitting on top of crowd accuracy is the effective question sensor accuracy as seen by our participants. As previously
discussed, we used a majority voting mechanism (that seeks extra answers as needed) to ascertain the best answer
for a question sensor instance. This was intended to buffer against malicious crowd workers, which we confirmed
in the previous section, and seek consensus for difficult cases.
Using our ground truth data set as a benchmark, we found the average accuracy for yes/no questions was

79.5% (max 98%, min 41%); 35% of the question sensors had an accuracy of over 90%, and 56% were over 80%
accurate. For count questions, we found an absolute mean error of 0.2 (min error 0.01, max error 0.68). The latter
result is particularly strong, as most count questions centered around people and car counting, with our results
showing we were off by less than one unit on average. Five of the six most accurate count questions involved
people counting, which is a relatively straightforward task where crowd workers are adept. This also highlights
an opportunity to guide user-defined question sensors toward archetypes known to be accurate. Techniques such
as CrowdVerge [34] could also be applied to provide automatic feedback on whether the crowd will agree on
answers. A full table of question sensor accuracies can be found in Figure 4.

6.4 User-DefinedQuestion Errors (RQ2)
Although we included an onboarding guide to help participants formulate effective question sensors, we encoun-
tered similar quality issues as found in our discovery deployment. In response, we systematically studied all
63 question sensor feeds, qualitatively identifying problems. We labelled error type, if any, in Figure 4. Overall,
yes/no questions with no discernible problems had a mean accuracy of 85%, shown as the gray bar in Figure 5. On
the other hand, question sensors marked with any error type had a mean accuracy of 71% (red bars in Figure 5).
The most frequent problem (13 of 63 sensors) was poor image quality (error label Q in Figure 4). We found

users often asked questions about specific items in the field of view that were nearly (or totally) impossible to
discern from the commodity cameras we used. For example, “are there papers on the printers” failed because of
insufficient contrast between paper and printers. In these scenarios, higher quality cameras would undoubtedly
boost accuracy.
Question sensors with insufficient context (error label X in Figure 4) had the lowest mean accuracy of 63%.

This may stem from users having too much implicit knowledge about their local environments, which is hard
to encapsulate in a short question or tightly cropped image region. For instance, in a tightly cropped view of a
road, it can be difficult to tell if a partially visible car is parked or driving. An example of an ambiguous language
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type error (label L in Figure 4) was “is the meeting room free (is the light on)?”, which was confusing to both
our crowd and expert labelers as generally when rooms were free, lights automatically turn off. To make these
question sensors more accurate in the future, we suggest asking users to provide examples to crowd workers,
shepherd the crowd to yield better work quality [26], suggest superior phrasing, or show crowd workers the full
camera image with region of interest highlighted.

6.5 Crowd Latency (RQ2)
The main source of latency in Zensors++ is the time required to gather answers from the crowd. We recorded
several metrics: (i) time taken for a crowd worker to provide an answer for an individual question sensor instance
(labeling duration), (ii) time taken from the moment an question sensor instance is captured to the moment
the first crowd answer is received (first answer end-to-end latency), and (iii) time taken from the moment an
question sensor instance is captured to the moment an answer of record is decided (answer of record end-to-end
latency). Note that these metrics do not include the near-zero latency when an answer can be automated through
perceptual image hashing and machine learning.

As shown in Figure 4, average labeling duration was 5.8 seconds for yes/no questions, and 6.6 seconds for count
questions. Median end-to-end latency to get the first crowd answer was 120 seconds (SD=19.6). The end-to-end
latency for answers of record was longer (median time of 355 seconds) and more distributed (SD=59.1), as two
(and sometimes three) crowd labels were needed by our majority voting scheme. Although our disagreement
queue had high priority, it could still take on the order of minutes to recruit a new worker who had not previously
seen the image. Figure 6 provides the histogram of these latencies. Future systems might consider revealing
answers as they come in, for example, revealing the first label to users, but marking it as tentative. As later
answers arrive, the confidence can be updated, offering a balance between latency and accuracy (similar to the
public information display in [30]).

6.6 Hashing Performance (RQ2)
We evaluated the effectiveness of perceptual image hashing in detecting and reducing redundant images. Out of
the 937,228 question sensor instances Zensors++ received, 74.4% (697,345) had a hash hit, and did not have to go
to the crowd for labeling, providing an answer at near-zero latency and cost (saving us approximately $17,500
over the course of 4 weeks). As one might expect, hash hit rate varied over the course of the day (Figure 7), and is
most successful between 1am to 9am, when there is little human activity.
To more closely evaluate how well our perceptual image hashing scheme performed in identifying similar

images, we randomly selected 200 images that were marked as “hashed” and retrieved the original crowd-labeled
image fromwhich the answer was inherited. A researcher then determined whether the new image was sufficiently
different from the original to warrant a change in the labeled answer. Differences were found in only two cases
out of the 200 image pairs, resulting in a hashing accuracy of 99.0%. In both failure cases, the selected region was
large, but the question asked about relatively small changes — so small as to not alter the perceptual hash of the
image, causing old (and incorrect) labels to be copied forward to hash hits. To mitigate this, we propose using
longer length hashes for larger images, or applying more advanced hashing algorithms, such as those combining
deep learning [54].

6.7 Cost (RQ2)
Next, we evaluated the cost of the question sensors created by our participants. In total, Zensors++ provided
answers to 937,228 question sensor instances over four weeks, costing $6,069 in crowd labor, for an average cost
per answer of $0.006. As discussed previously, we utilized a majority voting scheme that started with two crowd
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Fig. 7. Mean perceptual hash hit rate over 24 hours, starting
at noon, far left.

Fig. 8. Distribution of daily cost across all question sensors
without machine learning. More than 60% of question sen-
sors cost $2/day or less to operate.

answers, and sought a third answer only when necessary. Thus, instead of soliciting three labels per question
sensor instance, Zensors++ required 2.53 labels on average, which saved $1,127 in crowd costs.
The cost of question sensors is directly correlated with their sampling frequency (see Figure 4). The average

per-day cost of yes/no questions was $2.41 (SD=2.79) and $4.50 (SD=8.90) for count questions. The higher cost of
count sensors was partly due to a lower hash hit rate of just 45% (vs. 60% for yes/no questions). We suspect this is
because questions needing count answers are inherently more dynamic and complex, whereas yes/no questions
are fundamentally testing the presence or absence of a visual feature.

The most expensive count sensor cost $40.69 per day, whereas the most expensive yes/no question cost $10.99
per day. However, from Figure 8, we see that 60% of our question sensors cost less than $2 per day. This result
underscores that many question sensors are already within the bounds of our participants’ perceived value
(discussed later). Over time, cost could be further reduced by relying increasingly on hashed answers and machine
learning. The daily cost distribution (Figure 8) shows that it is possible to run periodic crowd validation after
a machine learning hand-off on a permanent basis. This suggests long term viability of such hybrid crowd-AI
systems for many use cases.

6.8 Machine Learning Accuracy (RQ2)
To test the feasibility of machine learning for answering question sensor instances, we ingested data at the end of
each day, and trained classifiers for each question sensor based on all available crowd-powered answers of record.
We then benchmarked these classifiers against next-day crowd performance.

Figure 4 offers the machine learning accuracy for every question sensor on the last day of the deployment (i.e.,
trained on data from days 1 through 27, tested on day 28). The average accuracy for machine-learning-powered
yes/no questions was 67% (SD=14%), which is close to average crowd accuracy of 72% (SD=13%). Of note, 43%
of our yes/no questions exceeded crowd accuracy. Machine-learning-powered count questions had an average
error of 0.72 (vs. 0.42 for the crowd). We saw that our classifier accuracy climbed quickly, often reaching its best
performance within 2-4 days. However, after this point, accuracy would fluctuate, owing to sporadic changes in
the environment. It may be that with more time and data, all environment “corner cases” could be captured and
integrated into the model.
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As for failure cases, we found that the two worst performing, machine-learning-powered yes/no questions (33%
and 40% accuracy) had very little training data (208 and 748 labeled instances respectively), owing to their one
image per hour sampling frequency. This may mean that higher rate question sensors, though more costly upfront,
might enable a faster handoff. Additionally, we found that some sensors tasked with capturing infrequent events
like “Do you see a garbage truck?” (frequency 60 seconds), which might only capture four positive labels in a
month, introduced a significant skew in class labels. These may be addressable in the future by, e.g., oversampling
positive examples.
Results suggest that some questions might never reach sufficient machine learning accuracy to be handed-

off, and would always require crowd power. However, poor classifier performance can be easily detected by
periodically bench-marking against the crowd. When handoff is determined to be infeasible, question sensors
could be run indefinitely on crowd power if infrequent (e.g., every hour) with acceptable cost (e.g., $0.60 a day, or
under $0.25 a day with average hashing performance), or could be disabled and prompt their creators to rephrase
or otherwise improve the question sensor.

6.9 Participant Use of Data (RQ3)
Participants’ usage of the system ranged from logging in once per month to multiple times per day. We found
that participants in commercial settings (lab managers, administrators, facility operators) were more interested
in investigating the longitudinal data feed to identify trends and changes. However, users in a personal capacity
cared more about what was currently happening when using the system. Often times, for a single sensor, multiple
stakeholders were interested in using the data feed differently. For example, for the question sensor “How many
people are in line at the cash register?”, a restaurant manager was interested in using the longitudinal data
to identify consumption patterns to better plan and prepare food, while our student participants were more
interested in knowing whether they can go and grab lunch without standing in a long line. Overall, participants
were excited about the system’s potential and wanted to incorporate it into their daily routines.

6.10 Types of Question Sensors (RQ3)
Participant question sensors (listed in Figure 4, examples shown in Figure 1) fell into one of two main categories:
event/state or capacity/availability. Event/State question sensors focused on changes in the state of the environ-
ment, including: “Is there any paper or mail here?”, “Is anything written on the whiteboard?”, “Do you see the
big metal shutter down?”, and “How many people are in the room?” On the other hand, capacity/availability
question sensors tracked resource utilization, including: “Is the coffee machine in use?”, “Is the trash can full or
is there trash around the trash can?”, “Is this seat occupied?”, and “How many tables are not being used?” We
noticed that many questions centered around cars, people and lights. In future systems, it may be advantageous
to use machine learning models tailored for the detection of these entities to facilitate early handoff.

6.11 ProxyQuestions (RQ3)
We found that some questions are difficult (or impossible) for crowd workers to answer because they lack
necessary context. For example, in brainstorming during onboarding, P15 wished to ask “Is my husband home?”
using an outside camera view of their home’s parking. Of course, crowd workers do not know P15’s husband,
and therefore were likely to provide inaccurate answers. Instead, P15 formulated an alternative question that was
context free — “Do you see a motorcycle here?” — selecting a region where her husband parks. This question
thus served as a “proxy” to know whether her husband is at home. As another example, P7 asked “Are the tables
set up in rows?” as a proxy question for whether he needed to go to the classroom early to arrange the room
before lecture. Lastly, P1 asked “Is someone standing at the printers?” as a proxy for knowing whether the printer
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queue was busy. The right-most column in Figure 4 denotes what we believe to be proxy questions, based on
entry and exit interviews with participants.

Despite these examples of proxy questions, it remains unclear how often participants did not ask a question of
interest because it could not be directly answered (even though a proxy question might have worked). Future
work might consider techniques to help users define and formulate proxy questions to sense questions they care
about when context is complex, e.g., through having conversations with the crowd to define rules [38].

6.12 Perceived Value (RQ4)
We asked participants how much they would be willing to pay for the question sensors they created in the context
of a commercial product. For personal use question sensors (e.g., “Is there any paper or mail here?”), participants
said they would pay on the order of $1-10 per month. For question sensors about line length and wait time,
participants reported they would not pay for them personally, but would appreciate and prefer businesses that
made such information available. Participants also called out question sensors that had poor accuracy during
deployment, and said they would not pay for such data.
Participants who were acting in a professional role, such as a facilities or lab manager, were willing to pay

the most (hundreds to thousands of dollars annually) to monitor longitudinal usage and important events (e.g.,
“Is the trashcan full or is there trash around the trashcan”, “Is anyone using the tools or equipment?”, and “The
basement can flood, do you see water on the ground?”). This was especially true for question sensors that directly
complemented or augmented existing work practices.

For example, a building manager’s (P17) typical practice was to dispatch workers to inspect trashcans every few
hours, emptying them when full. With Zensors++, he received text notifications when trashcans were full, and
began to dynamically dispatch his staff. P17 also created question sensors to detect basement floods, which would
usually require someone reporting an incident, or for one of his staff to discover flooding. Either way, flooding
out of work hours resulted in a delayed response, that could now be proactively handled with Zensors++. Indeed
P1, P2, P14, P15 and P17 all noted in interviews the importance of pushed data in forms of digests, reports and
notifications, which they could more easily integrate into their work flows. In another case, a program director
(P1) was using Zensors++ to ask “Is someone sitting on any of this furniture?” in order to test different furniture
arrangements, akin to physical A/B testing.

6.13 Privacy and Sharing (RQ4)
Several participants (P2, P6, P14, P17) noted they were initially worried about privacy invasion, but once we
explained our privacy preservation measures, they indicated feeling more favorable about using cameras for
visual sensing. This behavior is consistent with the economic model of privacy, where users often make trade-offs
between privacy and utility. P15 mentioned she forgot about the cameras after setting them up, chiefly looking at
the data. P1 said it felt odd to have the ability to see what everyone is doing, and suggested to abstract images to
a drawing or data visualization [17].
Most participants agreed that for cameras in common spaces, everyone residing or working in that space

should assent, as well as have access to the camera and question sensors. For this reason, we used signs at our
institution to inform people of camera-based sensing, and provided contact details to add them to the deployment
if desired. All participants rejected the idea of sharing cameras and question sensors related to their homes, but
did not seem to mind that images were being labeled by crowd workers. To further improve privacy in the future,
systems could integrate human-in-the-loop progressive filtering [42], hire private professional crowds, or allow
users to label their own data until machine learning is able to take over.
Of note, throughout deployment at our institution, signs were used to inform people that camera-based

sensors were running. We did not formally study their effect, however, in one instance a camera was set up
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and accidentally omitted a printed sign. By the end of the day, multiple facility managers had received emails
about the camera. However, in all other instances with properly placed signs, no concerns were raised during the
several months of the study.

7 FUTURE WORK
While we concentrated on personal and commercial uses in this work, there are no doubt interesting industrial,
civic and health application domains that could be well suited to Zensors++. Similarly. there are options to move
beyond recruiting crowd workers solely from Amazon Mechanical Turk, and explore how different crowd groups
are able to work within Zensors++. For example, a private crowd could produce higher quality results, potentially
alleviating the need for e.g., majority voting. It may also be possible for long-term crowd workers to engage with
users to refine question sensors, and even curate the machine learning handoff.

Our deployment, which continues at the time of writing, is gathering substantial data of a kind that is different
from other visual questioning answering tasks. Foremost, it is real data from real questions that people have.
Each question also contains many sequential examples, as opposed to one-off question instances. In the future,
we hope to release a dataset for computer vision researchers. We would like to study how models learned from
one question sensor can transfer to other question sensors of a similar type.

Finally, it would be interesting to more deeply explore how users are willing to share access to their cameras,
question sensors and data. For example, some of our participants pointed cameras out of windows to monitor
outside scenes. It would be interesting if e.g., municipalities could utilize these cameras as an ad hoc distributed
sensing system for “is their litter on the sidewalk?” and “is snow accumulating on the road?” A business across
the street might ask e.g., “is there available parking in front?” and “did a customer enter?” The ubiquity of cameras
offers a unique opportunity for a public and highly distributed sensing fabric offering unmatched generality.

8 CONCLUSION
We have described our work on Zensors++, a crowd-AI sensing system designed to answer natural language user
questions based on camera streams. We started with a discovery deployment, which helped to distill key insights
that lead to the development of an improved system architecture and feature set. We then conducted a second
deployment for four weeks, with 17 participants, resulting in nearly a million answers for 63 participant-defined
question sensors. We demonstrated that crowd workers were able to provide labels quickly and at scale, and that
the system could hand-off to machine learning classifiers in many cases. We also demonstrated the importance of
image hashing for dramatically reducing the number of questions that needed to go to the crowd for labeling.
We further discussed important system-related characteristics, such as scalability, accuracy, error types, latency,
cost, and effectiveness of automation. We also synthesized feedback from our study participants, revealing user
motivation, perceived value, privacy, and overall utility. Overall, we believe our deployments demonstrate the
feasibility of crowd-AI, camera-based sensing at scale, and offer a number of insights for those wishing to deploy
robust and responsive systems in the future.
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