
VizLens: A Robust and Interactive Screen Reader
for Interfaces in the Real World

Anhong Guo1, Xiang ‘Anthony’ Chen1, Haoran Qi2, Samuel White1, Suman Ghosh1,

Chieko Asakawa3, Jeffrey P. Bigham1

1Human-Computer Interaction Institute, 2Mechanical Engineering Department, 3Robotics Institute

Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

anhongg, xiangche, chiekoa, jbigham @cs.cmu.edu, haoranq, samw, sumang @andrew.cmu.edu
 { } { }

ABSTRACT
The world is full of physical interfaces that are inaccessible
to blind people, from microwaves and information kiosks to
thermostats and checkout terminals. Blind people cannot in
dependently use such devices without at least first learning
their layout, and usually only after labeling them with sighted
assistance. We introduce VizLens —an accessible mobile ap
plication and supporting backend that can robustly and inter
actively help blind people use nearly any interface they en
counter. VizLens users capture a photo of an inaccessible
interface and send it to multiple crowd workers, who work
in parallel to quickly label and describe elements of the inter
face to make subsequent computer vision easier. The VizLens
application helps users recapture the interface in the field of
the camera, and uses computer vision to interactively describe
the part of the interface beneath their finger (updating 8 times
per second). We show that VizLens provides accurate and
usable real-time feedback in a study with 10 blind partici
pants, and our crowdsourcing labeling workflow was fast (8
minutes), accurate (99.7%), and cheap ($1.15). We then ex
plore extensions of VizLens that allow it to (i) adapt to state
changes in dynamic interfaces, (ii) combine crowd labeling
with OCR technology to handle dynamic displays, and (iii)
benefit from head-mounted cameras. VizLens robustly solves
a long-standing challenge in accessibility by deeply integrat
ing crowdsourcing and computer vision, and foreshadows a
future of increasingly powerful interactive applications that
would be currently impossible with either alone.

Author Keywords
Non-visual interfaces; visually impaired users; accessibility;
crowdsourcing; computer vision; mobile devices.

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User Inter
faces - Input devices and strategies; K.4.2 Computers and
Society: Social Issues - Assistive technologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’16, October 16-19, 2016, Tokyo, Japan
© 2016 ACM. ISBN 978-1-4503-4189-9/16/10...$15.00
DOI: http://dx.doi.org/10.1145/2984511.2984518

INTRODUCTION
The world is full of inaccessible physical interfaces. Mi
crowaves, toasters and coffee machines help us prepare food;
printers, fax machines, and copiers help us work; and check
out terminals, public kiosks, and remote controls help us live
our lives. Despite their importance, few are self-voicing or
have tactile labels. As a result, blind people cannot easily use
them. Generally, blind people rely on sighted assistance ei
ther to use the interface or to label it with tactile markings.
Tactile markings often cannot be added to interfaces on pub
lic devices, such as those in an office kitchenette or check
out kiosk at the grocery store, and static labels cannot make
dynamic interfaces accessible. Sighted assistance may not
always be available, and relying on co-located sighted assis
tance reduces independence.

Making physical interfaces accessible has been a long-
standing challenge in accessibility [11, 26]. Solutions have
generally either involved (i) producing self-voicing devices,
(ii) modifying the interfaces (e.g., adding tactile markers), or
(iii) developing interface- or task-specific computer vision so
lutions. Creating new devices that are accessible can work,
but is unlikely to make it into all devices produced due to cost.
The Internet of Things may help solve this problem eventu
ally; as more and more devices are connected and can be con
trolled remotely, the problem becomes one of digital accessi
bility, which is easier to solve despite challenges. For exam
ple, users may bring their own smartphone with an interface
that is accessible to them, and use it to connect to the device
[10, 32]. Computer vision approaches have been explored,
but are usually brittle and specific to interfaces and tasks [11].
Given these significant challenges, we expect these solutions
will neither make the bulk of new physical interfaces accessi
ble going forward nor address the significant legacy problem
in even the medium term.

This paper introduces VizLens, a robust interactive screen
reader for real-world interfaces (Figure 1). Just as digital
screen readers were first implemented by interpreting the vi
sual information the computer asks to display [31], VizLens
works by interpreting the visual information of existing phys
ical interfaces. To work robustly, it combines on-demand
crowdsourcing and real-time computer vision. When a blind
person encounters an inaccessible interface for the first time,
he uses a smartphone to capture a picture of the device and
then send it to the crowd. This picture then becomes a ref
erence image. Within a few minutes, crowd workers mark
the layout of the interface, annotate its elements (e.g., buttons

http://dx.doi.org/10.1145/2984511.2984518
mailto:Permissions@acm.org
mailto:sumang}@andrew.cmu.edu
mailto:jbigham}@cs.cmu.edu

Figure 1. VizLens users take a picture of an interface they would like to use, it is interpreted quickly and robustly by multiple crowd workers in parallel,
and then computer vision is able to give interactive feedback and guidance to users to help them use the interface.

or other controls), and describes each element (Figure 1A).
Later, when the person wants to use the interface, he opens
the VizLens application, points it toward the interface, and
hovers a finger over it. Computer vision matches the crowd-
labeled reference image to the image captured in real-time.
Once it does, it can detect what element the user is pointing
at and provide audio feedback or guidance (Figure 1B). With
such instantaneous feedback, VizLens allows blind users to
interactively explore and use inaccessible interfaces.

In a user study, 10 participants effectively accessed other
wise inaccessible interfaces on several appliances. Based on
their feedback, we added functionality to adapt to interfaces
that change state (common with touchscreen interfaces), read
dynamic information with crowd-assisted Optical Character
Recognition (OCR), and experimented with wearable cam
eras as an alternative to the mobile phone camera. The com
mon theme within VizLens is to trade off between the advan
tages of humans and computer vision to create a system that
is nearly as robust as a person in interpreting the user inter
face and nearly as quick and low-cost as a computer vision
system. The end result allows a long-standing accessibility
problem to be solved in a way that is feasible to deploy today.

This paper makes the following contributions:

•	 We introduce VizLens, a system that combines on-demand
crowdsourcing and real-time computer vision to make real-
world interfaces accessible.

•	 In a study with 10 visually impaired participants, we show
that VizLens can provide useful feedback and guidance in
assisting them accomplish realistic tasks that involve oth
erwise inaccessible visual information or interfaces.

•	 We show that our crowdsourcing labeling workflow is fast
(8 minutes), accurate (99.7%), and cheap ($1.15). Once
the reference image is prepared, VizLens provides accu
rate, real-time feedback across many different devices.

•	 We produce VizLens v2, which adapts to state changes in
dynamic interfaces, combines crowd labeling with OCR
technology to handle dynamic displays, and benefits from
head-mounted cameras.

RELATED WORK
Our work is related to prior work on (i) making visual in
formation accessible with computer vision, and (ii) crowd-
powered systems for visual assistance.

Computer Vision for Accessibility
A number of systems have been developed to help blind peo
ple access visual information using computer vision. Spe
cialized computer vision systems have been built to help blind
people read the LCD panels on appliances [11, 26, 30]. These
systems have tended to be fairly brittle, and have generally
only targeted reading text and not actually using the interface.
Because it uses crowdsourcing, VizLens can adapt fluidly to
new interfaces it has not seen before.

Several prior systems have been developed to help blind peo
ple take better photographs, since acquiring a high-quality
photograph is often a prerequisite for further computer vision
processing [15, 25, 33, 35, 41]. One of the challenges with
systems supporting “blind photography” is that it is often un
clear what the user is trying to take a picture of. VizLens
solves this problem by first having the crowd assist users in
capturing a clear picture of the interface, which can then be
recognized again later when the user is receiving assistance.

Many systems have been developed to help blind people read
visual text via OCR [36]. For instance, the KNFB Reader
[18] is a popular application for iOS that helps users frame
text in the camera’s view, and then reads text that is captured.
Camera-based systems such as Access Lens ‘read’ physical
documents and lets a blind person listen to and interact with
them [17]. OCR can do reasonably well in providing access
to text that is well-formatted, but recognizing text in the real
world can be difficult1. Even detecting that text exists in natu
ral photographs can be difficult [16]. VizLens reads text using
OCR in display areas marked by the crowd.

Recently, deep learning approaches have been applied to gen
eral object recognition, in products such as Aipoly2 and Mi
crosoft’s “Seeing AI”3 . These approaches can work rea
sonably well, although can only recognize a preset number
of objects (e.g., Aipoly recognizes approximately 1000 pre
defined objects). VizLens may eventually be used to collect
data about physical interfaces that could be used to train deep
learning models capable of replicating its performance.

Various projects have experimented with wearable computer
vision approaches. Fingerreader [29] assists blind users with
reading printed text on the go. One challenge that this ap
proach has is that information beneath the fingertip can be oc
cluded. This is a problem that VizLens does not have because
it uses context to recognize occluded information based on its
reference image. EyeRing similarly leverages a finger-worn
camera to interpret immediate surroundings using computer
vision [27]. OrCam is a product that uses a head-mounted
camera to make available various computer vision applica
tions targeting low vision people [28]. Foresee enables real-
world objects to be magnified using a wearable camera and
head-mounted display [40]. The form factors of these all in
troduce interesting opportunities that VizLens may eventually

1http://www.meridianoutpost.com/resources/
articles/ocr-limitations.php
2http://aipoly.com
3This exists currently as an unreleased system; a blog post about
it is here: https://blogs.microsoft.com/next/2016/03/30/decades-of
computer-vision-research-one-swiss-army-knife/

support; all are fundamentally limited by the performance of
underlying computer vision.

Crowd-Powered Systems for Visual Assistance
Crowd-powered systems have been developed for various ap
plications, e.g., document editing and shortening [5], user in
terface control [22], real-time captioning [21]. These systems
operate quickly by both lowering the latency to recruit work
ers [4, 6], and allowing workers to work synchronously to
gether once recruited. At least two existing projects have ex
plored the combination of computer vision and crowdsourc
ing. Zensors [20] fuses real-time human intelligence from
online crowd workers with automatic approaches to provide
robust, adaptive, and readily deployable intelligent sensors.
Tohme [14] combines machine learning, computer vision,
and custom crowd interfaces to find curb ramps remotely in
Google Street View scenes, which performs similarly in de
tecting curb ramps compared to a manual labeling approach
alone at a 13% reduction in time cost. VizLens is a crowd-
powered system for making physical interfaces accessible.

A number of crowd-powered systems have been developed
to make visual information accessible to blind people. One
of the first projects in this space was VizWiz4, a system that
lets blind people take a picture, speak a question, and get an
swers back from the crowd within approximately 30 seconds
[6]. More than 10,000 users have asked more than 100,000
questions using VizWiz5. Users often ask questions about in
terfaces [9], but it can be difficult to map the descriptions sent
back, e.g., “the stop button is in the middle of the bottom row
of buttons,” to actually using the interface. VizLens makes
this much easier.

Other systems provide more continuous support. For exam
ple, Chorus:View [23] pairs a user with a group of crowd
workers using a managed dialogue similar to [24] and a
shared video stream. “Be My Eyes” matches users to a sin
gle volunteer over a shared video stream [3]. These systems
could more easily assist blind users with using an interface,
but assisting in this way is likely to be cumbersome and slow.
VizLens specializes on the important subset of visual assis
tance tasks related to using physical interfaces and can assist
with very low latency.

Other systems have expanded the capabilities of VizWiz. For
example, VizWiz::LocateIt [7] allows blind people to ask for
assistance in finding a specific object. Users first send an
overview picture and a description of the item of interest to
crowd workers, who outline the object in the overview pic
ture. Computer vision on the phone then helps direct users to
the specific object. This is somewhat similar to VizLens in
that the robust intelligence is handled by the crowd, whereas
the interactive refinding task is handled by computer vision.
VizLens extends this to multiple objects and explicitly gives
feedback on what is beneath the user’s finger.

RegionSpeak [42] enables spatial exploration of the layout
of objects in a photograph using a touchscreen. Users send
4The “Viz” prefix comes from how some tech-savvy blind people
refer to one another, e.g., “are you viz?”
5http://vizwiz.org/data/

http://www.meridianoutpost.com/resources/articles/ocr-limitations.php
http://www.meridianoutpost.com/resources/articles/ocr-limitations.php
http://aipoly.com
http://vizwiz.org/data/
https://blogs.microsoft.com/next/2016/03/30/decades-of

a photo (or multiple stitched photos), and the crowd labels
all of the objects in the photo. Users can then explore the
photo on a touchscreen. VizLens reuses some of these ideas
in labeling all of the interface elements, although it extends
RegionSpeak’s functionality into real-world detection of in
terface elements that have been labeled.

FORMATIVE STUDY
We conducted several formative studies to better understand
how blind people currently access and accommodate inacces
sible interfaces. We first went to the home of a blind person,
and observed how she cooked a meal and used home appli
ances. We also conducted semi-structured interviews with
six blind people (aged 34-73) about their appliances use and
strategies for using inaccessible appliances. Using a Wizard-
of-Oz approach, we asked participants to hold a phone with
one hand and move their finger around a microwave control
panel. We observed via video chat and read aloud what button
was underneath their finger.

We extracted the following key insights, which we used in the
design of VizLens:

•	 Participants felt that interfaces were becoming even less ac
cessible, especially as touchpads replace physical buttons.
However, participants did not generally have problems lo
cating the control area of the appliances, but have problems
with finding the specific buttons contained within it.

•	 Participants often resorted to asking for help, such as a
friend or stranger: frequently seeking help created a per
ceived social burden. Furthermore, participants worried
that someone may not be available when they are most
needed. Thus, it is important to find alternate solutions
that can increase the independence of the visually impaired
people in their daily lives.

•	 Labeling interfaces with Braille seems a straightforward
solution but means only environments that have been aug
mented are accessible. Furthermore, fewer than 10 percent
blind people in the United States read Braille [1].

•	 Participants found it difficult to aim the phone’s camera
at the control panel correctly. In an actual system, such
difficulty might result in loss of tracking, thus interrupting
the tasks and potentially causing confusion and frustration.

•	 Providing feedback with the right details, at the right time
and frequency is crucial. For example, participants found
it confusing when there was no feedback when their fin
ger was outside of the control panel, or not pointing at a
particular button. However, inserting feedback in these sit
uations brings up several design challenges, e.g., the gran
ularity and frequency of feedback.

VIZLENS
VizLens is an accessible mobile application for iOS and a
supporting backend. VizLens users capture a photo of an in
accessible interface and send it to multiple crowd workers,
who work in parallel to quickly label and describe elements
of the interface to make subsequent computer vision easier.
The VizLens application helps users recapture the interface

in the field of the camera, and uses computer vision to match
new camera input to previously obtained crowd-labeled ref
erence images to recognize and inform the user of the control
he intends to use by providing feedback and guidance.

Implementation
VizLens consists of three components: (i) mobile application,
(ii) web server, and (iii) computer vision server.

Mobile App
The iOS VizLens app allows users to add new interfaces (take
a picture of the interface and name it), select a previously
added interface to get interactive feedback, and select an el
ement on a previously added interface to be guided to its lo
cation. The VizLens app was designed to work well with the
VoiceOver screen reader on iOS.

Web Server
The PHP and Python web server handles image uploads, as
signs tasks to Amazon Mechanical Turk workers for segment
ing and labeling, hosts the worker interface, manages results
in a database and responds to requests from the mobile app.
The worker interfaces are implemented using HTML, CSS,
and Javascript.

Computer Vision Server
The computer vision pipeline is implemented using C++ and
the OpenCV Library. The computer vision server connects
to the database to fetch the latest image, process it, and write
results back to the database. Running real-time computer vi
sion is computationally expensive. To reduce delay, VizLens
uses OpenCV with CUDA running on GPU for object local
ization. Both the computer vision server and the web server
are hosted on an Amazon Web Services EC2 g2.2xlarge in
stance6, with a high-performance NVIDIA GRID K520 GPU,
including 1,536 CUDA cores and 4GB of video memory.

Overall Performance
Making VizLens interactive requires processing images at in
teractive speed. In the initial setup [13], VizLens image pro
cessing was run on a laptop with 3GHz i7 CPU, which could
process 1280 × 720 resolution video at only 0.5 fps. Re
ceiving feedback only once every 2 seconds was too slow,
thus we moved processing to a remote AWS EC2 GPU in
stance, which achieves 10 fps for image processing. Even
with network latency (on wifi) and the phone’s image acquisi
tion and uploading speed, VizLens still runs at approximately
8fps with 200ms latency.

Initial Crowdsourced Segmenting and Labeling
The first time a user encounters an interface, he uses VizLens
to take a photo of the interface (Figure 2b), provide a name
for it, and send the image to be processed and pushed to the
crowd for manual labeling. This image is called the “refer
ence image.” In order to make the reference image most use
ful for computer vision algorithms, VizLens uses a two-step
workflow to label the area of the image that contains the in
terface and then label the individual visual elements.

6https://aws.amazon.com/ec2/instance-types/#g2

https://aws.amazon.com/ec2/instance-types/#g2

Figure 2. VizLens mobile app interfaces. (a) App’s main screen, listing all available interfaces and status, as well as Add Interface and Settings options.
(b) Interface for Add Interface, where the user can take a photo and denote a name for it. (c) When user selects an interface, he can start to get feedback.
(d) When selecting a visual element, the app start providing guidance. (e) a virtual interface layout that users can explore directly on the touchscreen.

Step 1: Segmenting Interface Region
In step 1 (Figure 3a), crowd workers are asked whether the in
terface of the object is complete and clear in the photo. If the
majority of workers agree that the photo contains a clear view
of the complete interface, it proceeds to the next step; other
wise the user is prompted to take another photo (Figure 2a).
Once an acceptable image is captured, crowd workers draw
a bounding box around the interface, which will be cropped
in the backend server and used for recognition later. In this
step, the crowd workers are also asked to indicate the approx
imate number of visual elements, which will make it easier to
distribute tasks and calculate compensation for the next step.

Step 2: Labeling Visual Elements
In step 2, crowd workers are instructed to draw bounding
boxes around all of the individual visual elements (e.g., but
tons) within the interface area (Figure 3b); and provide a
text annotation for each element (such as labeling buttons as
‘baked potato’, ‘start/pause’). Similar to RegionSpeak [42],
VizLens has multiple workers label in parallel to complete
all of the visual element within a very short time, even if the
interface is cluttered with visual elements (although we are
currently not as aggressive in recruiting workers).

The workers interface shows labeled elements to other work
ers as they are completed. Over time, this allows the workers
to completely label all of the elements. An initial challenge
was that workers tended to label the interface in the same or
der at the same time, e.g., from top to bottom. This resulted
in redundant labels that increased the time required to com
pletely label the interface. We cannot simply queue all the
labeling tasks because we do not know a priori where the el
ements are. To encourage workers to label different buttons,
we added an arrow that points to a random location (e.g., up
arrow in Figure 3b). Even though the arrow is placed ran

domly, it effectively directs workers toward different parts of
the interface, encouraging them to work in different orders
and reducing redundant work.

The VizLens backend monitors the progress of labeling, in
cluding aggregating overlapping labels, and counting the
number of visual elements already labeled. Two bounding
boxes are detected to be overlapping with each other if each
one of the center points lies within the other. Once it reaches
the expected number of visual elements from step 1, the in
terface will show an option for finishing labeling this image
(the bottom option in Figure 3b). Once agreement is reached,
this image then becomes the reference image (Figure 4a).

In the future, this labeling step could use automatic tech
niques as a first pass, e.g., OCR or automatic button detection,
in order to save crowd workers’ time. Over time, the data col
lected as people use VizLens may allows robust recognizers
to be trained. We do not expect automatic approaches to work
perfectly in the near term, which is why we use the crowd.

After initial segmenting and labeling by the crowd, VizLens
relies on computer vision. The reason computer vision is
likely to work robustly now is that the problem has been sim
plified from the general problem (any interface in any con
text) to a much more specific one (this interface in a similar
context, e.g., lighting condition, placement, etc). This hyper-
local context argument is similar to that used to explain why
computer vision worked better than expected in Zensors [20].

Retrieving Visual Elements
The core function of VizLens is to speak a description of the
part of the interface that is beneath the user’s finger. To do
this, VizLens needs to be able to (i) find the interface in the
input images, (ii) detect their finger, and (iii) retrieve and out
put the correct information based on the finger location.

Figure 3. Crowd segmenting and labeling interfaces of VizLens: (a)
crowd workers rate the quality of the initial photo of the interface, seg
ment the interface area, and specify the number of visual elements on the
interface, (b) other crowd workers then label individual visual elements
on the interface in parallel.

Figure 4. Real-time recognition and control using VizLens. Recogni
tion result, showing (a) reference image and (b) input image. (c) Input
image warped to reference image’s frame allowing the coordinates of
the elements previously labeled to be retrieved. (d) Result of skin color
thresholding, and (e) calculated fingertip location.

Refinding the Desired Interface
Using the reference image obtained earlier, VizLens can first
localize the interface in the input video stream in real-time. It
uses SURF (Speeded-Up Robust Features) [2] feature detec
tor with hessian threshold set to 400 to compute key points
and feature vectors in both the reference (Figure 4a) and
the input image (Figure 4b). Note that the reference image
can be pre-computed once in advance to improve processing
speed. The feature vectors are then matched using brute-force
matcher with normalization type of L2 norms, which is the
preferable choice for SURF descriptors. By filtering matches
and finding the perspective transformation between the two
images using RANSAC (Random Sample Consensus), Viz-
Lens is able to localize the reference image of the interface
in the input image. In Figure 4b, the green bounding box is
identified by transforming the corners of the reference image
to corresponding points in the input image.

Fingertip Detection
VizLens then transforms the input image to the reference im
age frame using a warp function (Figure 4c), adjusts the light
ing of the warped image to match the reference image, and
detects the fingertip’s location using skin color thresholding
[34]. After performing Gaussian Blur with a 3-by-3 kernel to
smooth the image and transforming it to HSV (Hue, Satura
tion, Value) color space, it uses a set of thresholds to segment
the skin parts from the image (for [H, S, V] values respec
tively, the lower thresholds are [0, 90, 60], and upper thresh
olds [20, 150, 255]). Then it uses morphological operations
i.e. eroding and dilating to filter out noises from the threshold
image (Figure 4d). Then, VizLens uses the largest contour of
the convex hull to detect the fingertip’s location (Figure 4e).
VizLens requires the user to use one finger to hover over the
button, therefore the system recognizes the topmost fingertip
location in the image if multiple exists. This approach also
reduces the size of the image to process to only the reference
image interface, reducing processing time.

Figure 5. (a) Defining interaction point relative to the detected fingertip
location. (b) Rules for assigning feedback based on button layout.

Information Lookup
Note that for interaction purposes, the topmost fingertip loca
tion is normally not the exact location of the finger pad that
is used to, e.g., press a button. Considering that most control
buttons are designed to be similar in size with a finger width
for ease of use, VizLens defines an “interaction point” by
adding a fraction of the average button size to the y-position
of the computed fingertip location (Figure 5a).

Then by looking up the coordinates of the interaction point in
the database of the reference image’s labeled visual elements,
VizLens provides real-time feedback or guidance. To do this
quickly, instead of looking up in the database every frame,
we pre-compute a hash table of the resolution of the reference
image associating pixel locations with feedback according to
the following rules (Figure 5b):

•	 If the interaction point is within a button, assign that but
ton’s label, e.g., power level;

•	 If the interaction point is within two buttons at the same
time, assign the button’s label whose center is closer to the
interaction point;

•	 If the interaction point is not in any button, check its dis
tance to the two closest buttons (d1, d2; d1 <= d2). If both
are larger than a threshold (e.g., average button size), as
sign an empty string;

•	 If only the closest distance (d1) is within the threshold, as
sign “near” and the button’s label, e.g., near power level;

•	 If both distances (d1 and d2) are within the threshold, as
sign the two button labels separate by “and” with the closer
one to start, e.g., power level and time cook.

Providing Feedback and Guidance
Providing Feedback
After identifying the visual element, VizLens triggers the
VoiceOver screen reader on iOS to read its description (Fig
ure 2c). In our formative studies, participants found it hard
to keep track of the feedback when their finger was moving
quickly on the interface. Therefore, if the finger movement
speed is over a threshold (e.g., 1.5 buttons per second), Viz-
Lens will not confuse the user by providing feedback.

Pilot users were confused when the system did not provide
any feedback, which happened when the object was not found
or when no finger was on the interface. Providing no feedback

was confusing, while having it repeat “no object” or “no fin
ger” could get annoying. Pilot users also found it annoying
when VizLens repeated the same label over and over again.
Based on this feedback, we decided to only announce the in
structions every second when it is not changing. On the other
hand, a different instruction is immediately announced. As an
option in the mobile app, users can select between announc
ing feedback using polite or interrupt mode. In polite mode,
a new label will be announced only after the current one fin
ishes. However, in interrupt mode, once a new label comes
in, it will announce it right away and cut off the current one.
As another preference option, besides saying “no object” or
“no finger”, VizLens also applies sonification techniques and
uses low and high pitch sound as earcons [8] to identify a lack
of object in view and a lack of finger while object is in view.

Providing Guidance
In our formative studies, participants wanted to know the di
rection to a button when unfamiliar with an interface. Viz-
Lens allows a user to specify a target in the app through
speech or selection in a list of available visual elements, and
then provides guidance to it (Figure 2d).

The path of navigation follows the Manhattan Distance [37]
between the current interaction point to the target location,
which means only vertically and horizontally. In order to
avoid frequent change of directions, VizLens guides the user
to first move vertically along the y-axis (i.e., up and down),
and once settled within a threshold, it proceeds to horizontal
directions (i.e., left and right). VizLens repeats the instruction
every second. Many participants overshot the target in our pi
lot studies. To address this problem, VizLens defines coarse
and fine control areas, and the system will notify the user to
move slowly when finger is near the target (e.g., within 1.5
button sizes from the center of the target). When the finger is
on the button, VizLens reads out the button label.

USER EVALUATION
The goal of our user study was to evaluate how VizLens per
forms in assisting visually impaired people accomplish real
istic tasks that involve otherwise inaccessible interfaces. We
evaluated it deeply on one appliance (an inaccessible mi
crowave), with more shallow evaluations across many other
devices. Further evaluation of its components is presented in
the next section (“Technical Evaluation”).

The microwave we chose was a Hamilton Beach 1.1 Cu Ft
Microwave. The buttons on this microwave are flat and pro
vide little (if any) tactile feedback. It contains some familiar
buttons (0-9), and many that are likely to be less familiar (e.g.,
time defrost, baked potato).

Apparatus and Participants
The VizLens iOS app was used in the study, installed on an
iPhone 5c, runing iOS 9.2.1. For this particular evaluation, all
the images were labeled by the experimenter as introducing
the crowd would result in compound factors. The quality of
the crowd’s labeling was evaluated in a separate study.

We first conducted a pilot study with two visually impaired
users to finalize the tasks, number of tasks, and fine-tuned

Table 1. Participant demographics for our user evaluation with 10 visually impaired users.
ID Gender Age Occupation Vision Level Smartphone Use
P1 Female 33 AT consultant Blind, since birth iPhone, 4 years
P2 Male 37 Tech teacher for blind Blind, since birth iPhone, 3 years
P3 Female 47 Sales Light perception, tunnel vision Android, 5 years
P4 Male 24 Software developer Blind, since birth iPhone, 5 years
P5 Male 34 AT specialist Light perception, since birth iPhone, 5 years
P6 Male 21 Student Light/color perception iPhone, 5 years
P7 Male 40 Digital AT consultant Blind, since birth iPhone, 2.5 years
P8 Male 31 Scriptor, AT instructor Light/color perception, since birth iPhone, 5 years
P9 Male 26 AT instructor Light perception, since birth iPhone, 5 years
P10 Male 29 Project manager Blind, later on Mostly iPhone, 10 years

Figure 6. User study setup. A printer’s interface is printed out on paper
and used for training. The microwave interface was used for controlled
testing, followed by more exploratory use of other interfaces nearby
(e.g., remote control, thermostat, vending machine). The study was con
ducted in a hotel room and was video and audio recorded.

some parameters in our system. We then recruited 10
visually-impaired users (2 female, age 21-47). The demo
graphics of our participants are shown in Table 1.

Design
Our study consisted of an initial training phase, followed by
a series of task using the microwave. There were two condi
tions in completing the tasks: (i) feedback - where the partic
ipants were provided with audio feedback of what is under
neath their finger on the interface; and (ii) guidance - where
audio directions were provided for them to move their fin
ger to a specific target. After each condition, we conducted a
semi-structured interview collecting subjective feedback for
the methods. The order of conditions was counterbalanced
for all participants. The study took about one hour and the
participants were compensated for $50. The whole study was
video and audio recorded for further analysis, and the study
set up is shown in Figure 6.

Tasks
Following a brief introduction of the study and demographic
questions, we first used a printer’s interface printed on paper
to familiarize the participants with the iOS app. In this train
ing phase, we also asked for the participant’s preferences on
the polite/interrupt and sound/word settings. Then, partici
pants were asked to take 10 photos of the microwave control
panel, with feedback provided after each one to simulate the

Figure 7. Visualization of user study tasks and identification results.
(a) Locating tasks highlighted in orange. (b) Simulating cooking tasks
highlighted in green and blue, and sequences shown with line and dashed
arrows. (c) Identification errors visualized on the interface, where all
errors are happening on the top region of the control panel.

crowd feedback for image quality. These images are used for
evaluating the crowd-based labeling in a separate study.

Next, for each of the two conditions, participants were asked
to complete five locating tasks and two simulating cooking
tasks. For locating tasks, the participant was asked to locate a
button with the assistance of the VizLens app, and then push
to trigger the button. As shown in Figure 7a, the 10 buttons
were selected so that they covered different areas on the con
trol panel. For simulating cooking tasks, we designed more
realistic tasks that involved a series of button presses. For ex
ample, a multi-button cooking task would require pressing a
configure button (e.g., weight defrost, time defrost, or time
cook), followed by setting a time duration by pressing the
number pads (e.g., 2, 1, 0 for two minutes and 10 seconds,
or two pounds and 10 oz), and finally pressing the ‘Start’
button. The specific tasks used are visualized in Figure 7b.
For both locating and simulating cooking tasks, we measured

completion rate and time for successfully completing a task.
After each condition, participants were asked a few subjective
questions about that condition.

After the two conditions, we conducted a controlled test for
identifying individual buttons. Participants were guided by
the experimenter to rest his/her finger on each button of the
interface. The system recognizes the button and the accu
racy was recorded. Finally, we ended the study with a final
semi-structured interview asking for the participant’s com
ments and suggestions on the VizLens system.

Results
We detailed our user study results and performed t-tests to
compare participant’s task completion rate and time for the
two methods. We also summarized users’ feedback and pref
erences that informed our next design iteration of VizLens.

Identification Tasks
For identification tasks, only 10 of a total of 250 buttons were
falsely identified across 10 participants, resulting in an ac
curacy of 96.0%. When taking a deeper look at the errors,
all errors are happening on the top region of the control panel
(Figure 7c). This is most likely because when interacting with
buttons on the top region, the user’s hand covers most of inter
face, making the object localization harder with fewer SURF
features points left in the image. Furthermore, our user study
demonstrated that VizLens works robustly in various lighting
and skin color conditions, as shown in Figure 8. To further
improve the robustness of the variety of skin color and light
ing conditions, we could add a pre-calibration step for indi
vidual users in new environments.

Figure 8. VizLens works robustly across various skin colors and lighting
conditions. These are images from participants that were processed by
computer vision and successfully identified the finger locations.

Locating Tasks
For locating tasks, participants successfully completed 41/50
(M = 82.0%, SD = 0.175) tasks under 200 seconds in feed
back condition, which is significantly lower than 49/50 (M =
98.0%, SD = 0.063) for guidance, t(9) = −2.753, p = 0.022
(two-tailed). However, there was no significant difference
for average task completion time between feedback (M =
52.5, SD = 52.6) and guidance (M = 54.4, SD = 40.4),
t(88) = −0.198, p = 0.843 (two-tailed). The difference in
task completion rate is most likely because for guidance it

is more independent of the user’s mental model of the inter
face. While for feedback, it is hard to find a random button.
Therefore, we hypothesized that it is easier to find function
buttons (e.g., power level, baked potato) using guidance than
feedback mode, while it is easier to find number buttons (i.e.,
0 - 9) using feedback than guidance.

To validate our hypothesis, we took a deeper look into the
data. For number buttons, with all tasks successfully com
pleted for both conditions, the average task completion time
for feedback (M = 27.8, SD = 17.6) was shorter than for
guidance (M = 36.3, SD = 17.0), though this is not statis
tically significant, t(9) = −1.138, p = 0.142 (one-tailed).
We think this is because using feedback mode, when the
users found a number, they also knew the general location
of other number buttons, making them easier to find. How
ever, for guidance mode, it is harder for participants to take
advantage of their mental model of the interface with the
directional instructions. For all other buttons, even though
there were no significant differences in task completion time
between feedback (M = 60.4, SD = 57.7) and guidance
(M = 59.1, SD = 43.4), t(68) = 0.910, p = 0.910
(two-tailed), the task completion rate for feedback was sig
nificantly lower (31/40, M = 77.5%, SD = 0.219) com
pared with (39/40, M = 97.5%, SD = 0.079) in guidance,
t(9) = −2.753, p = 0.011 (one-tailed).

Figure 9 shows the time breakdown for feedback and guid
ance modes. In feedback mode, users aim the camera and
search for the button repetitively, and press once they reach
the button. In guidance mode, users first select a button from
the list in the VizLens app, aim the camera, follow instruc
tions to the button, and press. One challenge we observed
is that sometimes VizLens would give correct feedback of a
button’s label, but users could not push it because their finger
was not directly on the center of the button. This could be
confusing, although users generally resolved it eventually.

Simulating Cooking Tasks
For simulating cooking tasks, there was no significant differ
ence in task completion rate between feedback (18/20, M =
90.0%, SD = 0.211) and guidance (20/20, M = 100%),
t(9) = −1.500, p = 0.168 (two-tailed), as well as in average
task completion time between feedback (M = 102.3, SD =
93.6) and guidance (M = 120.4, SD = 64.8), t(36) =
−0.698, p = 0.490 (two-tailed).

Subjective Feedback
During training, we asked for participant preferences on po
lite/interrupt and sound/word settings. 6 out of 10 participants
preferred interrupt mode than polite mode, due to its instan
taneous feedback. For sound/word setting, half the users pre
ferred using words, while the other half preferred earcons.
The users who preferred using words mentioned that the two
earcons for “no object” and “no finger” were not distinctive
enough for them to easily differentiate between the two.

We asked the participants to rate and compare the two method
based on learnability, comfort, usefulness, and satisfaction
(Figure 10). Several participants expressed their frustration
with aiming and keeping good framing of the camera. Sev

Figure 9. Time breakdown for feedback and guidance modes. For feedback, users aim the camera and search for the button repetitively, and press once
they reach the button. For guidance, users first select a button in the list, aim the camera, then follow the instructions to the button, and press.

Figure 10. Answers to Likert scale questions indicating that participants
found VizLens useful (1, 2, 3) and wanted to continue using it (4).

eral participants tried to get a general idea of the button layout
from the linear button list (Figure 2c) and suggested to show
the layout of the buttons of the interface on the touchscreen,
so that they can explore and build a mental model first, and
then use the system’s feedback to locate the button they want
to use, similar to RegionSpeak [42]. We address most of this
feedback in VizLens v2 presented later. Overall, participants
were excited about the potential of VizLens and several asked
when the app can be available for download. One participant
mentioned that when living alone and got a new appliance,
he had to wait and ask someone to help put dots on it. Using
VizLens, he could get oriented by himself and start using it
right away, which is a big advantage.

TECHNICAL EVALUATION
We conducted a multi-part technical evaluation in order to
understand how each component of VizLens performs across
a range of interfaces.

Crowdsourcing Performance
We evaluated our crowdsourcing interfaces with the 120 im
ages taken by the blind participants in the user studies just
described. First, the experimenters manually labeled these
images as ground truth. For each image, each segmenta
tion step was completed by a different worker (Figure 3a).
For image quality, an agreement of three workers was re
quired. If the image was determined to be complete and clear,
2 × (N umberof Buttons) of HITs were created for the la
beling step (Figure 3b) so that multiple crowd workers could
work in parallel. Once a worker agreed with the system that
the interface is completely labeled, this crowdsourcing seg
menting and labeling process is completed.

A total of 251 crowd workers participated in this evaluation,
providing 2,147 answers overall. For the 68 out of 120 im
ages that failed the quality qualifications, it took an average of

134 seconds (SD = 86) for VizLens to provide this feedback.
All of the feedback was correct. Each segmenting task paid
$0.15, which required ∼40 seconds of work ($13.5/hour).
Each image costs an average of $0.50 (SD = 0.09).

For the 52 out of 120 images that were complete and clear, it
took an average of 481 seconds (SD = 207) before the Viz-
Lens interface was ready to be used, including time to upload
the photo, workers to pick up the HITs, complete the tasks,
and the system to aggregate labels. 99.7% (SD = 1.3%)
of the buttons were correctly labeled. Each labeling task paid
$0.02, which required less than 10 seconds of work ($9/hour).
Each interface costs an average of $1.15 (SD = 0.12). We be
lieve more aggressive recruiting of crowd workers could lead
to even shorter latencies, but this was not our focus.

Interface Robustness
Similar to the identification tasks in the user evaluation, we
conducted a controlled test for identifying individual buttons
on another set of interfaces (Figure 11) to see when it suc
ceeds and fails. For the thermostat, remote control, laser cut
ter, toaster and printer, VizLens successfully recognized all
buttons. For the vending machine, button A on the top left
failed, possibly also because of the hand covering a large por
tion of the interface. For the copier and water machine, even
though all buttons were successfully recognized eventually,
there were a lot of false-identifications initially caused by the
buttons that confused with the skin color in HSV color space.
To adapt for these situations, applying background subtrac
tion method or pre-calibration of skin color for fingertip de
tection might improve performance. VizLens failed the fridge
interface completely, mainly because there are very few fea
tures points that can be used for matching for the object local
ization algorithm. Similar for identification results in the user
studies, where all errors happened near the top of the control
panel, the requirement for feature points for object localiza
tion and matching is a limitation of VizLens. One possibility
to adapt to interfaces with few feature points is to attach fidu
cial markers with specific patterns to introduce feature points
into the field of view [12]. This would require modifying the
interface, but, as opposed to labeling it, would not require the
markers to be positioned in any particular place and could be
done independently by a blind person.

VIZLENS VERSION 2
Based on participant feedback in our user evaluation, we de
veloped VizLens v2. Specifically, we focus on providing bet
ter feedback and learning of the interfaces.

Figure 11. VizLens works robustly with a wide range of interfaces,
including microwaves, printers, copiers, water machines, thermostats,
laser cutters, toasters, remote controls, vending machines, etc.

For VizLens to work properly it is important to inform and
help the users aim the camera centrally at the interface. With
out this feature, we found the users could ‘get lost’ —they
were unaware that the interface was out of view and still kept
trying to use the system. Our improved design helps users
better aim the camera in these situations: once the interface
is found, VizLens automatically detects whether the center of
the interface is inside the camera frame; and if not, it provides
feedback such as “Move phone to up right” to help the user
adjust the camera angle.

To help users familiarize themselves with an interface, we im
plemented a simulated version with visual elements laid out
on the touchscreen for the user to explore and make selection
(Figure 2e), similar to RegionSpeak [42]. The normalized
dimensions of the interface image as well as each element’s
dimensions, location and label make it possible to simulate
buttons on the screen that react to users’ touch, thus helping
them get a spatial sense of where these elements are located.

We also made minor function and accessibility improvements
such as vibrating the phone when the finger reaches the tar
get in guidance mode, making the earcons more distinctive,
supporting standard gestures for back, and using the volume
buttons for taking photos when adding a new interface.

We also explored functional extensions of VizLens that allow
it to (i) adapt to state changes in dynamic interfaces, (ii) com
bine crowd labeling with OCR technology to handle dynamic
displays, and (iii) benefit from head-mounted cameras.

VizLens::State Detection
Many interfaces include dynamic components that cannot be
handled by the original version of VizLens, such as an LCD
screen on a microwave, or the dynamic interface on self-
service checkout counter. As an initial attempt to solve this
problem, we implemented a state detection algorithm to de
tect system state based on previously labeled screens. For the
example of a dynamic coffeemaker, sighted volunteers first go
through each screen of the interface and take photos. Crowd
workers will label each interface separately. Then when the

Figure 12. VizLens::State Detection detects screen state and adapts to it.
In this example, VizLens figures out which of six states this fancy coffee
machine is in, and provides feedback or guidance specific to that screen.

Figure 13. VizLens::LCD Display Reader applies OCR to recognize dig
its on the portion of the interface that is an LCD screen. (a) Separated
dynamic and static regions. (b) Image sharpening using unsharp mask
ing. (c) Intensity-based thresholding. (d) Morphological filtering and
small blob elimination. (e) Selective color inversion.

blind user accesses the interface, instead of only performing
object localization for one reference image, our system will
first need to find the matching reference image given the cur
rent input state. This is achieved by computing SURF key-
points and descriptors for each interface state reference im
age, performing matches and finding homographies between
the video image with all reference images, and selecting the
one with the most inliers as the current state. After that, the
system can start providing feedback and guidance for visual
elements for that specific screen. As a demo in our submis
sion video, we show VizLens helping a user navigate the six
screens of a coffeemaker with a dynamic screen (Figure 12).

VizLens::LCD Display Reader
VizLens v2 also supports access to LCD displays via OCR.
We first configured our crowd labeling interface and asked
crowd workers to crop and identify dynamic and static re
gions separately (Figure 13a). This both improves computa
tional efficiency and reduces the possibility of interference
from background noises, making it faster and more accu
rate for later processing and recognition. After acquiring the
cropped LCD panel from the input image, we applied several
image processing techniques, including first image sharpen
ing using unsharp masking [39] for enhanced image quality
(Figure 13b) and intensity-based thresholding to filter out the
bright text (Figure 13c). We then performed morphologi
cal filtering to join the separate segments of 7-segment dis
plays (which are commonly used in physical interfaces) to
form contiguous characters, which is necessary since OCR
assumes individual segments correspond to individual char
acters. For the dilation’s kernel, we used height > 2×width

Figure 14. We migrated VizLens to run on Google Glass, which has the
advantage of leaving the user’s hand free, easier to keep image framing
stable, and naturally indicating the field of interest.

to prevent adjacent characters from merging while forming
single characters. Next, we applied small blob elimination
to filter out noise (Figure 13d), and selective color invertion
to create black text on a white background, which OCR per
forms better on (Figure 13e). Then, we performed OCR on
the output image using the Tesseract Open Source OCR En
gine [38]. When OCR fails to get an output, our system dy
namically adjusts the threshold for intensity thresholding for
several iterations.

VizLens::Wearable Cameras
56.7% of the images took by the blind participants for crowd
evaluation failed the quality qualifications, which suggests
there is a strong need to assist blind people in taking pho
tos. In our user evaluation, several participants also ex
pressed their frustration with aiming and especially keeping
good framing of the camera. Wearable cameras such as the
Google Glass have the advantage of leaving the user’s hand
free, easier to keep image framing stable, and naturally in
dicating the field of interest. We have ported the VizLens
mobile app to Google Glass platform (Figure 14), and pilot
tested with several participants. Our initial results show that
participants were generally able to take better framed pho
tos with the head-mounted camera, suggesting that wearable
cameras may address some of the aiming challenges.

DISCUSSION AND FUTURE WORK
VizLens enables access and exploration of inaccessible in
terfaces by providing accurate and usable real-time feedback
and guidance. While VizLens is not the first system to com
bine crowdsourcing and computer vision, we believe its ro
bustness and focus on interactive tasks differentiate it from
prior work in this area. This paper targets making physical
interfaces of the type found on electronic appliances accessi
ble. VizLens might be extended to other tasks that involve the
presentation and interaction with spatial information. For in
stance, VizLens could be useful in helping blind users access
inaccessible figures or maps [19].

Even after access to the content of an interface is available,
designing good feedback remains challenging. In compar
ing feedback and guidance in our user studies, we found that
some visual elements are laid out in a way that promotes
“wayfinding”, e.g., number pads, when feedback is better;
while some are less intuitive, e.g., the functional buttons, and

in these cases guidance is better. We could ask crowd workers
to provide more structural information of the interface, and
dynamically adjust between the two modes when navigating
their finger on the interface. Note that we tried to merge the
two methods together by providing feedback and guidance
at the same time, e.g., “time cook and kitchen timer, up”.
However, it was difficult for users to deal with so much infor
mation, especially when the user is also focusing on moving
their finger to locate certain button. VizLens opens up new
opportunities and relevance for the design of audio feedback
to support interaction with otherwise inaccessible interfaces.

Our crowdsourcing evaluation results show that our crowd-
sourced segmenting and labeling workflow was fast (8 min
utes), accurate (99.7%), and cheap ($1.15) for a very visually
cluttered microwave interface with 25 buttons, demonstrating
the practicality of VizLens in the real world. If VizLens were
a product, a full time staff might reasonably be employed to
provide interface labeling. It is likely possible that we could
push the initial latency of creating the reference image down
to a minute or two [42], although it is unclear how important
this will be in practice, given that feedback from computer
vision is nearly instantaneous once labeled. Future work may
look to have the crowd provide more information regarding
the interface for various information need, such as details of
usage of each visual element rather than only a label, struc
tural information, dynamic and static components, etc.

Built-in quality control (e.g., checking that the size and aspect
ratio of the button bounding box is reasonable, spell checking
text labels, etc.) and redundancy mechanisms in VizLens im
prove the quality of answers. For the vision-based system
components, refinding the desired interface and fingertip de
tection would not be affected by errors of crowd labeling. On
the other hand, the information lookup might be affected if
the boundary of the button is smaller or larger than its ac
tual size, (e.g., if the button is labeled to be larger, the region
where the system will read the buttons label in feedback mode
will increase). The system can adapt to some of this, for ex
ample, in Figure 5b, the second rule on the left column shows
that this labeling deviation can be fixed by the lookup rules.
Furthermore, once the blind users finger is on the button, he
or she can generally push around to activate it.

An immediate future goal is to deploy VizLens to see how
it performs over time in the everyday lives of blind users.
Supporting such a deployment will require substantial engi
neering in order to scale the backend system. Currently the
computer vision is run remotely because it needs a relatively
high-power GPU in order to perform at interactive speeds.
Yet, we expect before long the necessary computing power
will be available on consumer phones. Over time, we expect
data collected from deployments will allow the training of
general models of physical interfaces, which may reduce or
eventually eliminate crowd labeling.

We also plan to explore tighter integration between the end
user, crowd, and computer vision. We imagine algorithms
will monitor and predict the performance of the computer
vision techniques. When the input images cause uncertain
recognition results, it will provide the user with the option to

‘ask the crowd’. This approach will inevitably take a longer
wait time but the returned crowd-labeled image can be added
to the library of reference images and improve the robustness
of the recognition. If a similar situation occurs in the future,
this new reference image could be a close match and the an
swers can be directly obtained from its labels. Collectively,
these reference images can also benefit a broader range of
users when it comes to interfaces in publicly shared spaces.
When a blind user enters an unfamiliar office building and
tries to use an interface, he can simply benefit from the refer
ence images previously collected by someone else. When the
images are geo-tagged, they can also help visually impaired
users locate the interfaces they wish to use.

Finally, the large number of images collected as the user op
erates the interface could be used to improve the system over
time. Using information of where the user pushes the button
can help with determining more accurate location of the fin
gertip and fix errors over time. Furthermore, usage informa
tion can be collected to learn about the common functionali
ties accessed, and used to inform a new user of usage patterns.

CONCLUSION
We have presented VizLens, an accessible mobile applica
tion and supporting backend that can robustly and interac
tively help blind people use inaccessible interfaces in the real
world. We introduced the design of the system and its tech
nical architecture, evaluated it in a user study with 10 blind
participants, and evaluated each component separately to un
derstand its limitations. Based on feedback from these stud
ies, we developed VizLens v2, which improved on the user
interface and explored how VizLens might adapt to chang
ing or dynamic interfaces. VizLens introduces a workflow
that leverages the strengths of the end user (knowledge of the
problem and context, and access to the interface), the crowd
(sight and general intelligence), and computer vision (speed
and scalability), and tightly integrates them to robustly solve
a long-standing challenge in accessibility.

ACKNOWLEDGMENTS
This work has been supported by the National Science Foun
dation, Google, and the National Institute on Disability, Inde
pendent Living, and Rehabilitation Research. We also thank
Yang Zhang for his help in the preparation of the user studies.

REFERENCES
1. The braille literacy crisis in america. facing the truth,

reversing the trend, empowering the blind. National
Federation of the Blind, Jernigan Institute, March 2009.

2. Bay, H., Tuytelaars, T., and Van Gool, L. Surf: Speeded
up robust features. In Computer vision–ECCV 2006.
Springer, 2006, 404–417.

3. Be My Eyes. http://www.bemyeyes.org, 2015.

4. Bernstein, M. S., Brandt, J., Miller, R. C., and Karger,
D. R. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology, ACM (2011), 33–42.

5. Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B.,
Ackerman, M. S., Karger, D. R., Crowell, D., and

Panovich, K. Soylent: a word processor with a crowd
inside. Communications of the ACM 58, 8 (2015),
85–94.

6. Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A.,

Miller, R. C., Miller, R., Tatarowicz, A., White, B.,

White, S., et al. Vizwiz: nearly real-time answers to

visual questions. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology, ACM (2010), 333–342.

7. Bigham, J. P., Jayant, C., Miller, A., White, B., and Yeh,
T. Vizwiz:: Locateit-enabling blind people to locate
objects in their environment. In Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE
Computer Society Conference on, IEEE (2010), 65–72.

8. Blattner, M. M., Sumikawa, D. A., and Greenberg,
R. M. Earcons and icons: Their structure and common
design principles. Human–Computer Interaction 4, 1
(1989), 11–44.

9. Brady, E. L., Zhong, Y., Morris, M. R., and Bigham, J. P.
Investigating the appropriateness of social network
question asking as a resource for blind users. In
Proceedings of the 2013 Conference on Computer
Supported Cooperative Work, CSCW ’13, ACM (New
York, NY, USA, 2013), 1225–1236.

10. de Freitas, A. A., Nebeling, M., Chen, X. A., Yang, J.,
Karthikeyan Ranithangam, A. S. K., and Dey, A. K.
Snap-to-it: A user-inspired platform for opportunistic
device interactions. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems,
CHI ’16, ACM (New York, NY, USA, 2016),
5909–5920.

11. Fusco, G., Tekin, E., Ladner, R. E., and Coughlan, J. M.
Using computer vision to access appliance displays. In
ASSETS/Association for Computing Machinery. ACM
Conference on Assistive Technologies, vol. 2014, NIH
Public Access (2014), 281.

12. Garrido-Jurado, S., Mu ̃noz-Salinas, R., Madrid-Cuevas,
F. J., and Marı́n-Jim ́enez, M. J. Automatic generation
and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition 47, 6 (2014), 2280–2292.

13. Guo, A., Chen, X., and Bigham, J. P. Appliancereader:
A wearable, crowdsourced, vision-based system to make
appliances accessible. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors
in Computing Systems, ACM (2015), 2043–2048.

14. Hara, K., Sun, J., Moore, R., Jacobs, D., and Froehlich,
J. Tohme: detecting curb ramps in google street view
using crowdsourcing, computer vision, and machine
learning. In Proceedings of the ACM symposium on User
interface software and technology (2014), 189–204.

15. Jayant, C., Ji, H., White, S., and Bigham, J. P.
Supporting blind photography. In The proceedings of the
13th international ACM SIGACCESS conference on
Computers and accessibility, ACM (2011), 203–210.

http://www.bemyeyes.org

16. Jung, K., Kim, K. I., and Jain, A. K. Text information
extraction in images and video: a survey. Pattern
recognition 37, 5 (2004), 977–997.

17. Kane, S. K., Frey, B., and Wobbrock, J. O. Access lens:
a gesture-based screen reader for real-world documents.
In Proc. CHI, ACM (2013), 347–350.

18. KNFB Reader. http://www.knfbreader.com/, 2015.

19. Ladner, R. E., Ivory, M. Y., Rao, R., Burgstahler, S.,
Comden, D., Hahn, S., Renzelmann, M., Krisnandi, S.,
Ramasamy, M., Slabosky, B., et al. Automating tactile
graphics translation. In Proceedings of the 7th
international ACM SIGACCESS conference on
Computers and accessibility, ACM (2005), 150–157.

20. Laput, G., Lasecki, W. S., Wiese, J., Xiao, R., Bigham,
J. P., and Harrison, C. Zensors: Adaptive, rapidly
deployable, human-intelligent sensor feeds. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, ACM (2015),
1935–1944.

21. Lasecki, W., Miller, C., Sadilek, A., Abumoussa, A.,
Borrello, D., Kushalnagar, R., and Bigham, J. Real-time
captioning by groups of non-experts. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology, ACM (2012), 23–34.

22. Lasecki, W. S., Murray, K. I., White, S., Miller, R. C.,
and Bigham, J. P. Real-time crowd control of existing
interfaces. In Proceedings of the 24th annual ACM
symposium on User interface software and technology,
ACM (2011), 23–32.

23. Lasecki, W. S., Thiha, P., Zhong, Y., Brady, E., and
Bigham, J. P. Answering visual questions with
conversational crowd assistants. In Proceedings of the
15th International ACM SIGACCESS Conference on
Computers and Accessibility, ACM (2013), 18.

24. Lasecki, W. S., Wesley, R., Nichols, J., Kulkarni, A.,
Allen, J. F., and Bigham, J. P. Chorus: A crowd-powered
conversational assistant. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’13, ACM (New York, NY, USA,
2013), 151–162.

25. Manduchi, R., and Coughlan, J. M. The last meter: blind
visual guidance to a target. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM (2014), 3113–3122.

26. Morris, T., Blenkhorn, P., Crossey, L., Ngo, Q., Ross,
M., Werner, D., and Wong, C. Clearspeech: A display
reader for the visually handicapped. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 14, 4
(Dec 2006), 492–500.

27. Nanayakkara, S., Shilkrot, R., Yeo, K. P., and Maes, P.
Eyering: a finger-worn input device for seamless
interactions with our surroundings. In Proceedings of
the 4th Augmented Human International Conference,
ACM (2013), 13–20.

28. OrCam. http://www.orcam.com, 2016.

29. Shilkrot, R., Huber, J., Liu, C., Maes, P., and
Nanayakkara, S. C. Fingerreader: A wearable device to
support text reading on the go. In CHI’14 Extended
Abstracts on Human Factors in Computing Systems,
ACM (2014), 2359–2364.

30. Tekin, E., Coughlan, J. M., and Shen, H. Real-time
detection and reading of led/lcd displays for visually
impaired persons. In Applications of Computer Vision
(WACV), 2011 IEEE Workshop on, IEEE (2011),
491–496.

31. Thatcher, J. Screen reader/2: Access to os/2 and the
graphical user interface. In Proceedings of the First
Annual ACM Conference on Assistive Technologies,
Assets ’94, ACM (New York, NY, USA, 1994), 39–46.

32. Vanderheiden, G., and Treviranus, J. Creating a global
public inclusive infrastructure. In Universal Access in
Human-Computer Interaction. Design for All and
eInclusion. Springer, 2011, 517–526.

33. V ́azquez, M., and Steinfeld, A. An assisted photography
framework to help visually impaired users properly aim
a camera. ACM Transactions on Computer-Human
Interaction (TOCHI) 21, 5 (2014), 25.

34. Vezhnevets, V., Sazonov, V., and Andreeva, A. A survey
on pixel-based skin color detection techniques. In Proc.
Graphicon, vol. 3, Moscow, Russia (2003), 85–92.

35. White, S., Ji, H., and Bigham, J. P. Easysnap: real-time
audio feedback for blind photography. In Adjunct
proceedings of the 23nd annual ACM symposium on
User interface software and technology, ACM (2010),
409–410.

36. Wikipedia. Optical character recognition — wikipedia,
the free encyclopedia, 2016. [Online; accessed
18-March-2016].

37. Wikipedia. Taxicab geometry — wikipedia, the free
encyclopedia, 2016. [Online; accessed 14-March-2016].

38. Wikipedia. Tesseract (software) — wikipedia, the free
encyclopedia, 2016. [Online; accessed 12-April-2016].

39. Wikipedia. Unsharp masking — wikipedia, the free
encyclopedia, 2016. [Online; accessed 12-April-2016].

40. Zhao, Y., Szpiro, S., and Azenkot, S. Foresee: A
customizable head-mounted vision enhancement system
for people with low vision. In Proceedings of the 17th
International ACM SIGACCESS Conference on
Computers and Accessibility, ASSETS ’15, ACM (New
York, NY, USA, 2015), 239–249.

41. Zhong, Y., Garrigues, P. J., and Bigham, J. P. Real time
object scanning using a mobile phone and cloud-based
visual search engine. In Proceedings of the 15th
International ACM SIGACCESS Conference on
Computers and Accessibility, ACM (2013), 20.

42. Zhong, Y., Lasecki, W. S., Brady, E., and Bigham, J. P.
Regionspeak: Quick comprehensive spatial descriptions
of complex images for blind users. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, ACM (2015), 2353–2362.

http://www.knfbreader.com/
http://www.orcam.com

	Introduction
	Related Work
	Computer Vision for Accessibility
	Crowd-Powered Systems for Visual Assistance

	Formative Study
	VizLens
	Implementation
	Mobile App
	Web Server
	Computer Vision Server
	Overall Performance

	Initial Crowdsourced Segmenting and Labeling
	Step 1: Segmenting Interface Region
	Step 2: Labeling Visual Elements

	Retrieving Visual Elements
	Refinding the Desired Interface
	Fingertip Detection
	Information Lookup

	Providing Feedback and Guidance
	Providing Feedback
	Providing Guidance

	User Evaluation
	Apparatus and Participants
	Design
	Tasks
	Results
	Identification Tasks
	Locating Tasks
	Simulating Cooking Tasks
	Subjective Feedback

	Technical Evaluation
	Crowdsourcing Performance
	Interface Robustness

	VizLens Version 2
	VizLens::State Detection
	VizLens::LCD Display Reader
	VizLens::Wearable Cameras

	Discussion and Future Work
	Conclusion
	Acknowledgments
	REFERENCES

