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“turn on the 
  lights here!”

“clean that 
      spot !”

“ play my 
   music  !”
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Figure 1: Interaction scenario of Minuet: after returning home, the user turns on the lights in the same room through voice
input (a); the user points at the Roomba (b) and then the dirty area to ask Roomba to clean it up (c); the user points at the
music player to listen to a personalized playlist (d); finally the user gestures to lower the volume while picking up a phone
call (e).

Abstract
A large number of Internet-of-Things (IoT) devices will soon popu-
late our physical environments. Yet, IoT devices’ reliance on mobile
applications and voice-only assistants as the primary interface lim-
its their scalability and expressiveness. Building off of the classic
‘Put-That-There’ system, we contribute an exploration of the design
space of voice + gesture interaction with spatially-distributed IoT
devices. Our design space decomposes users’ IoT commands into
two components—selection and interaction. We articulate how the
permutations of voice and freehand gesture for these two com-
ponents can complementarily afford interaction possibilities that
go beyond current approaches. We instantiate this design space
as a proof-of-concept sensing platform and demonstrate a series
of novel IoT interaction scenarios, such as making ‘dumb’ objects
smart, commanding robotic appliances, and resolving ambiguous
pointing at cluttered devices.

CCS Concepts
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
Internet-of-Things (IoT) promises a future where homes are popu-
lated by smart and connected objects, from intelligent appliances,
to automated furniture, to service robots. To control these smart
and connected objects, one approach is to develop accompanying
apps on personal devices (e.g., phones and watches). However, as
the number of IoT devices continues to increase, it costs users un-
scalable amount of attention to manage and retrieve device-specific
control apps.

An alternative approach is interacting with IoT devices through
natural language commands via intelligent voice assistants (e.g.,
Amazon Alexa, Google Home). Voice input alone, however, is lim-
ited for issuing commands with spatially-distributed IoT devices.
For example, if a person reading a book wants to dim all the lights
except for the one above him/her: it would be quite cumbersome to
express such intent using natural language commands alone. Fur-
ther, such verbose commands would be challenging for the assistant
to recognize and execute.

To enable spatial expressiveness in interacting with IoT devices,
prior work such as Snap-to-It [13] explores connecting to an ap-
pliance and controlling it by simply taking a picture. However, it
cannot address situations where the IoT device is at a distance or
out of sight from the user. To enable remote interaction from afar,
WristQue [29], SeleCon [1], and Scenariot [20] employ Ultra-Wide
Band (UWB) technology to point at and control IoT devices. While
spatially expressive, such freehand gestures alone can be ambigu-
ous—pointing at close-by devices can be ambiguous, and gestural
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commands can also be ambiguous (e.g., volume up vs. brightness
up).

To resolve ambiguity, one approach is multimodal interaction,
e.g., combining voice and gesture. The classic ‘Put-That-There’ sys-
tem employs voice commands in tandem with pointing gestures
to spatially manipulate elements on a large display [8]. Another
motivation for adding the gestural modality is for social appropri-
ateness: participants in our formative study mentioned preferences
of a quiet input technique in certain situations. Despite the many
prior examples and benefits of multimodal interaction, there is still
a lack of systematic exploration into the various possibilities of
combining voice and gestures in an IoT interaction scenario.

Our research contributes a design space of voice + gesture in-
teraction with spatially-distributed IoT devices. We conducted a
formative study to investigate how users would interact with IoT de-
vices using voice and freehand gestures. Findings suggest that users
express their intent of controlling IoT devices as two components—
selection and interaction. We illustrate how the permutations of
voice and gesture for these two components can complementarily
afford interaction possibilities that go beyond existing approaches.
Compared to prior work that discusses the general relationships
between multiple modalities [30], our design space focuses on a
concrete scenario with IoT devices and articulates the interplay
between two specific modalities: voice and gesture.

To instantiate the design space, we then developed Minuet—a
proof-of-concept sensing platform using UWB and motion sensors
to accurately and robustly detect which IoT device a user is point-
ing at (selection), as well as to recognize the control interaction
expressed by voice, gesture, or a combination of both. A technical
evaluation shows that Minuet achieved a localization accuracy of
0.330m and a low false positive rate in detecting the occurrence
of a pointing gesture (one in the entire 45-min study involving 10
participants). Further, to better understand users’ performance of
the proposed interaction, we measure and model users’ freehand
pointing behavior using an angular offset: on average participants’
pointing in a 6m × 10m room was off the target (IoT devices) by
9◦. Finally, a qualitative study provides empirical evidence on the
benefits of using voice + gesture to interact with IoT devices, and
reveals areas of improvement in future work.

1.1 Scenario Walkthrough
Fig. 1 illustrates several voice + gesture interaction techniques
sampled from our design space and implemented with our proof-
of-concept sensing platform. Larry walks into the kitchen carrying
several boxes. It is too dim to see, so he says “turn on the lights
here.” Only the kitchen lights up but not the other rooms. Larry
notices a plant was knocked over by his dog Bella. Larry points
at the Roomba and says “clean that spot!” while circling the dirty
area on the floor. The Roomba promptly travels to the crime scene
and starts cleaning. To cover Roomba’s noise, Larry points to a
speaker of his whole-home audio system and says “play my music.”
Knowing it is Larry, the system selects a playlist from his favorites.
Larry enjoys the music as the Roomba almost finishes cleaning.
Suddenly, the phone rings and it is Larry’s boss. Hurrying to pick
up the call, Larry points to the speaker and waves his hand down
to lower the volume.

As demonstrated in this scenario, by combining voice and ges-
ture, users can expressively interact with IoT devices, more so than
relying on mobile apps or voice-only assistants.

1.2 Contribution
Our main contribution is a design space that depicts various voice
+ gesture techniques to solve the long-standing problem of ex-
pressively interacting with spatially-distributed IoT devices. Our
proof-of-concept system provides concrete implemented examples
(as shown in the video figure) from the design space, and further
demonstrates the technical feasibility of our proposed interactions.

2 RELATEDWORK
Two streams of prior work is related to our research: multimodal
interaction and interacting with IoT devices.

2.1 Multimodal Interaction
Multimodal interaction exploits the synergic use of different modal-
ities to optimize how users can accomplish interactive tasks [32].
Early systems such as ‘Put-that-there’ let a user simply point at
a virtual object and literally tell the the system to put that object
somewhere else by pointing at a different location on a 2D projected
display [8]. Quickset demonstrated a military planning interface
that allows a user to pen down at a location on a map and utter
the name of a unit (e.g., “red T72 platoon”) to place at that location
[12].

To optimally combine different modalities, it is important to un-
derstand their individual characteristics. In general, pointing and
gestures were found to be more useful when specifying targets that
are “perceptually accessible” to a user while speech is better at spec-
ifying “abstract or discrete actions” [39]. Oviatt et al. summarized
that “basic subject, verb, and object constituents almost always are
spoken, whereas those describing locative information invariably are
written or gestured” [33]. Our work is inspired by these findings:
we introduce pointing gesture to complement existing voice assis-
tants’ limited capability in specifying multiple spatially-distributed
IoT devices. Indeed, as Oviatt et al. pointed out, multimodal in-
put “occurred most frequently during spatial location commands”
[34], which suggests the potential of multimodally specifying and
interacting with IoT devices situated across the physical space.

To interpret multimodal input, it is important to understand the
‘interaction’ between modalities. Oviatt found that users’ natural
language input is simplified during multimodal interaction, as the
complexity is offloaded to more expressive modalities [31]. Cohen
et al. pointed out that direct manipulation can effectively resolve
anaphoric ambiguity and enable deixis commonly found in natural
language communication [11]. Building off of this work, our system
demonstrates how the recognition of freehand pointing catalyzes
voice-only interaction, allowing users to explicitly and concisely
voice-control a specific IoT device.

2.2 Interacting with IoT Devices
Prior work has explored various techniques and technologies to
enable novel interactions with IoT devices, which we categorize
below by the style of interaction.
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By voice Recent development in natural language processing
and cloud computing democratized voice-based interaction with
IoT devices, such as Amazon Alexa [2], Google Home [14], and
Apple HomePod [3].

By a remote control One of the most popular approaches has
been extending the conventional device-specific remote control.
Beigl proposed a laser-based universal remote control instrumented
with a transceiver so that specific interactions with a given device
can be provided to the user on the remote control [6]. Infopoint
was a device with a uniform user interface for appliances to work
together over a network, such as picking up data from a display
and dropping it onto another [23]. Gesture Connect enabled a user
to first scan a device’s NFC tag and then use physical gesture on
a mobile phone to control that device [36]. Improv allowed users
to create custom cross-device gestures (e.g., on a smart phone) to
control an IoT device on-the-fly by demonstration [10].

By proximity Schilit et al.’s seminal paper on context-aware
computing discussed how devices’ information, commands and
resources can be dynamically made available to a user based on
where a user is at, with whom, and what is nearby [38]. Proxemic in-
teraction [5] leveraged the proximity between a user and devices in
the environment to fluidly transition between implicit and explicit
interaction [22], gradual engagement between personal devices
[28], and the control of appliances [26]. Deus EM Machina enabled
a mobile phone to identify a close-by IoT device, and to provide
custom control for a user to interact with that device [41].

By gaze Zhang et al. augmented an eyewear with an IR emitter
to select objects instrumented with IR receivers [42]. To address the
‘Midas touch’ problem, Velloso et al. let a user gaze at and follow
the animation overlaid on a device to engage with it [40].

By camera capture or discovery Going beyond fiducial mark-
ers in augmented reality [37], iCam augmented a location-aware
handheld device with a camera and a laser range-finder, thus en-
abling users to annotate surrounding appliances with digital infor-
mation [35]. Snap-to-It [13] and SnapLink [9] are systems that let
a user select and interact with an IoT device by taking a picture of
the unmarked device. Heun et al. explored interaction techniques
that overlay on-screen virtual controls when the camera is facing a
real-world device [19]. Similarly, Scenariot combines SLAM (simul-
taneous localizing and mapping) and UWB technologies to localize
and discover available interactions with surrounding IoT devices
[20]. Although requiring instrumenting each individual device with
an UWB module, Scenariot’s system served as an initial inspiration
for our system implementation.

By freehand pointing Perhaps the more related approach to
our work is freehand pointing at an IoT device to select and interact
with it, which was demonstrated in [1]. However, the drawback is
that it requires a dedicated UWB module for each IoT device. To
address this problem, WristQue [29] instruments only the user and
the environment, and employs motion sensors to infer which device
a user is pointing at based on their current location. The problem is
that freehand pointing alone can be ambiguous, especially when the
devices are too close to each other; once a device is selected, there
is gestural ambiguity (e.g., the same swipe-up gesture might refer
to increasing brightness or volume). To solve these problems, our
system provides interaction techniques for disambiguation, while

incorporating the voice modality to increase the expressiveness of
specifying IoT devices’ control commands.

3 FORMATIVE STUDY
To inform the creation of the design space, we conducted a formative
study to investigate how users would remotely (i.e., from a distance)
and multimodally interact with IoT devices.

3.1 Participants & Apparatus
We recruited 10 participants (aged 18-28, 6 males, 4 females). Five
were native English speakers; eight had experience interacting with
intelligent home assistants. Fig. 2 shows an arrangement of eight
typical household appliances around a user in a 6m × 10m = 60m2

space. We chose these appliances so that there were both single (e.g.,
one Roomba, one oven, one AC) and multiple (e.g., four lamps, two
electronic door locks) devices with various tasks described below.

3.2 Tasks & Stimuli
Participants were asked to remotely control the appliances while
standing at the center of the room. For task design, we considered
the distinction between commands (e.g., turn on/off, change volume,
clean an area) and information (e.g., when will the coffee be ready,
what is the AC’s set temperature) based on Schilit et al.’s dichotomy
[38]. We also intentionally placed several appliances close to each
other, e.g., the lamps were 30cm apart from each other (Fig. 2).
To avoid priming the participants, we described each command-
task [38] by showing the participants a pre-recorded video of an
appliance’s state change (e.g., a lamp going from off to on), similar
to that in PixelTone [25]. Specifically, participants were given the
following instructions:

“Assuming all appliances can understand any of your hand or arm
gestures and/or natural language, how would you remotely cause the
appliance(s) into the effect shown in the video?”

Participants were asked to come up with and perform gesture
and/or voice input. The studies were video recorded, and partici-
pants’ comments and responses during the tasks were also gathered.

3.3 Analysis & Results
We found that the way participants expressed their intent of con-
trolling IoT devices almost always consisted of two components: (i)

AC

Projector

Coffee Machine

Electronic Door Lock

Oven

Music Player

Roomba

Lights

User Standing Point

Figure 2: Room and appliances layout in the formative
study.
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Figure 3: A design space of voice + gesture with spatially-distributed IoT devices. Note that we further subdivide a few cells
where we extend voice + gesture with design considerations such as contextual awareness, user identification and disambigua-
tion, as a way to demonstrate the richness and extensibility of our design space.

Selection—specifying a target device, and (ii) Interaction—specifying
the command or requesting for information. However, participants’
preferences varied in using gestures and/or voice as their desired
interaction modality.

For selection, eight of the ten participants moved their arm to-
wards the target appliance, although their specific hand gestures
differed (pointing, circling, tapping, waving). For interaction (spec-
ifying commands or requesting information), six participants in-
teracted with appliances multimodally (i.e., using both gestural
and verbal commands) while one participant chose to use gestures
only and three others used voice only. Despite their preferences,
participants mentioned reasons for using multiple modalities. The
most common consideration was social appropriateness, e.g., when
in a quiet environment or when having a conversation with others,
gestures can complement voice input.

One specific question we were interested in is how participants
handled ambiguous situations (i.e., appliances close to each other).
Some participants suggested left/right-swipe gesture to switch
amongst close-by appliances until the correct one was selected.
Some others preferred using relative spatial references in voice
input to disambiguate, such as “turn on the left light”, “the one in
the middle”.

3.4 Implications for Design
• Voice + gesture interaction with IoT devices consists of two
components: selection and interaction;

• Freehand pointing (moving arm/hand towards the target) is
an intuitive way for selecting a device;

• Verbal and gestural commands should be able to work both in-
terchangeably (to cater to various contexts) and collaboratively
(to increase expressiveness);

• The system should clearly indicate ambiguous device selec-
tions and allow for follow-up disambiguation either verbally
or gesturally.

4 DESIGN SPACE & EXAMPLES
Based on the findings from our formative study, we constructed
a design space to lay out various multimodal interaction possibil-
ities with spatially-distributed IoT devices, as well as comparing
our work with prior or existing systems. As shown in Fig. 3, the
two design dimensions correspond to the two components com-
monly found in participants’ expression of commands to control
IoT devices: selection of a device and specific interaction with the
device. We further subdivide a few cells where we extend voice +
gesture with design considerations such as contextual awareness,
user identification and disambiguation, as a way to demonstrate
the richness and extensibility of our design space.

Below we illustrate this design space by walking through each
of its ‘cells’, using examples we later implemented in a proof-of-
concept sensing platform (detailed later in §5).

Voice Selects, Voice Interacts This part of the design space is
most commonly found in commercial voice-only assistants without
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“turn it on!”

ba

Figure 4: Using voice to turn on a light (a); later when it is
night time and quiet, a gesture is more contextually appro-
priate for turning the light off (b).

any contextual information about the user. However, as localiza-
tion technology (e.g., using sound or radio) becomes increasingly
available, we can expect to add contextual awareness to voice input
that allows for an ‘unspoken’ selection of appliances. For example,
as shown in Fig. 3a and implemented in Fig. 1a, a user walking into
a dark kitchen asks to turn the lights on; knowing where the user
is, the system turns on only the lights in the kitchen but not those
in other rooms.

Voice Selects, Gesture Interacts Such a combination works
for scenarios where the user can continuously gesture their intent
with an IoT device, rather than having to repeat a voice command.
For example, as shown in Fig. 3b, a user—feeling too cold—can call
out “AC” and then keep gesturing the temperature up until s/he
feels comfortable. In this case continuous gesturing is more natural
and efficient than otherwise having to repetitively say “warmer” or
“increase temperature.”

Voice Selects, Voice + Gesture Interacts Compared to Fig. 3a,
adding gestures to voice interaction further provides spatial refer-
ences. For example, as shown in Fig. 3c and implemented in Fig. 1b, a
user can call out “Roomba”, speak out the task (“clean”) and gesture
to specify spatial references (“here” while gesturing to circle a dirty
area on the floor). This part of the design space bridges IoT inter-
action with related research in robotics, where similar multimodal
commands have been developed to control robots [17, 18].

Gesture Selects, Voice Interacts This is the most common way
in our formative study to remotely control an IoT device. Impor-
tantly, in this cell we illustrate the distinction between single- and
multi-user interaction—as shown in Fig. 3e, in a meeting with mul-
tiple presentations, each presenter can start their slides by simply
pointing at the projector and saying “start presentation”, which will
be interpreted in conjunction with the user’s identity to retrieve
the corresponding slides. As shown in Fig. 6, during the presenta-
tion, the presenter can point to an audience member, which grants
his/her personal device temporary access to navigate to specific
slides for questions.

Gesture Selects, Gesture Interacts This combination provides
useful options during situational impairment or when voice input
might be socially inappropriate (e.g., in a quiet place). For exam-
ple, when on the phone, a user can point to the music player and
swipe down to decrease the volume (Fig. 1e). While prior work
has explored similar point-and-gesture interactions [1, 20, 29], the
problem of disambiguating close-by devices was never addressed in
a real-world setting. In contrast, we propose both a gesture (Fig. 3f)
and a voice (discussed in §5) mechanisms for disambiguation: in

“turn on this, 
      this and this!”

“set alarm at, 
      7 tmr !”

a b

Figure 5: Auser can point and selectmultiple IoT devices in a
single sequence of action (a); a built-in alarm clock function
can be assigned to a static object, such as a night stand (b).

Fig. 3f, a follow-up gesture ‘swipes’ through ambiguous candidates
until the correct device is selected.

Gesture Selects, Voice + Gesture Interacts As a user points
at an IoT device (e.g., TV), voice is utilized to issue a one-shot com-
mand (e.g., lower volume) and a gesture to continuously perform
that command (e.g., waving down to keep lowering the volume).
Unlike an AC (Fig. 3b), a TV has more control options than a simple
up/down gesture can specify (Figure 3g); adding voice here dis-
ambiguates the user’s intent (e.g., volume up/down vs. brightness
up/down).

4.1 More Exemplar Interactions Inspired by
the Design Space

Below we showcase more exemplar interactions inspired by, and
extended from, the aforementioned design space and implemented
using our proof-of-concept sensing platform.

Contextually-appropriate interaction As mentioned in Fig. 3a,
the combination of voice and gesture allows for contextually appro-
priate interaction with IoT devices. As shown in Fig. 4, normally
a user can point to a floor lamp and say “turn it on”; however, at
night time with family members asleep, a silent gesture is more
contextually appropriate when turning the lamp off.

Multi-device selection & disambiguation As shown in Fig. 5a,
a user returning home late can say “turn on this, this and this” while
pointing to two floor lamps and the table lamp. The system groups
these consecutively selected devices in the same input frame, and
applies the same action.

Figure 6: After starting the slides, the presenter points to
an audience member who raised his/her hand, granting
him/her with temporary access to navigate to specific slides
for questions.
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Interacting with ‘dumb’ physical objects Fig. 5b shows an
example of interacting with ‘dumb’ objects as a virtual IoT device.
Discussed later in §5, our proof-of-concept system provides an
interface for a user to register the position of an object (e.g., a
nightstand) or a zone (e.g., the living room). Such objects and zones
then become interactive to pointing gesture. For example, as shown
in Fig. 5b, a user can point at a nightstand it and say “set alarm 7
am for tomorrow”, which effectively turn the physical nightstand
to a virtual alarm clock.

Multi-user scenario As shown in Fig. 6, a user points to the
projector and uses voice to start a presentation, which can then be
controled by gestures. As an audiencemember raises his/her hand to
ask a question, the presenter points at him as an acknowledgement.
The synchronized hand-raising and pointing act as a ‘handshake’,
granting the audiencemember temporary access to the presentation
system, e.g., navigating to a specific slide for questions.

5 SYSTEM DESIGN & IMPLEMENTATION
In this section we describe the design and implementation of Min-
uet—a proof-of-concept sensing platform that instantiates our de-
sign space. As shown in Fig. 7, the hardware of Minuet consists
of instrumented UWB transceivers in the environment; a mobile
component that is worn on a user’s wrist, which consists of a mi-
crocontroller with built-in Wi-Fi and Bluetooth modules, a UWB
localization module, an IMU, and a battery. Building on top of this
hardware setup, the software can recognize when a user points at
an IoT device, which device is pointed at, how to disambiguate, and
how to interpret users’ subsequent voice and/or gesture input to
interact with the selected device.

5.1 Selecting an IoT Device via Pointing
Minuet allows a user to select an IoT device by simply pointing
at it, which is enabled by drawing a pointing vector from a user’s
location to ‘intersect’ with IoT devices’ pre-registered locations
(Fig. 8). Below we explain how each of these components works.

DecaWave DWM1001-DEV

DecaWave DWM1001
UWB unit

Espressif  ESP32
Wireless unit

Bosch BNO-055
IMU unit

a bANCHOR TAG

Figure 7: Hardware components of Minuet: four UWB an-
chors (a) are instrumented in the environment to triangulate
a user that wears a UWB tag, an IMU and a wireless module
on a wristband (b).

Obtaining locations of users and IoT devices For localizing a
user, we use an off-the-shelf Ultra-Wide Band (UWB) Real-Time Lo-
calization System1, which is comprised of four anchors—UWB radio
transceivers that set up a UWB coordinate system and triangulate
a tag device worn on the user’s wrist. We measured a localization
accuracy of 30 cm in our lab space (detailed in the next section).

For localizing IoT devices, instead of requiring a laborious scan-
ning process that suffers from noise and errors, Minuet leverages a
user’s wrist-worn UWB tag and provides a light-weight mechanism
to register an IoT device’s location. As shown in Fig. 9a, in the
registration mode, a user simply uses the hand that wears the UWB
tag to tap at one or multiple points over a device’s surface (e.g.,
the vertices of its bounding box); the system then automatically
computes the spatial and geometric representation of the IoT device.
Even if the device is later moved to a different location, with a few
taps the user can easily update its spatial information. Similarly, the
user can also spatially register different zones (e.g., kitchen, living
room) by walking around their enclosing space in the registration
mode (Fig. 9b).

Detecting when a pointing gesture occurs Prior work has
explored thresholding the magnitudes of accelerometer and gy-
roscope to detect the onset of pointing [1]. The problem is that
the high threshold value requires a user to extend their arm very
fast in order for the pointing to be recognized. To overcome this
problem we take a data-driven approach: as a pointing gesture is
performed, we collect raw data from the accelerometer and gyro-
scope over an empirically defined 1.5 second window. We trained a
Random Forest [27] classifier over 160 examples of pointing ges-
tures (varied in directions and speeds) and 900 samples of inactivity
(e.g., walking around, hand waving, typing on a computer, reading
books). Our approach runs a sliding time window to ‘pick up’ a
user’s pointing gesture, producing only one false positive over a
collective 45 minutes of inactivity2 (10 participants × 270 seconds
per participant).

Detecting which device is pointed at As the system detects
the occurrence of a pointing gesture, it first computes the pointing
direction v computed by transforming IMU’s absolute pointing
1https://www.decawave.com/sites/default/files/dwm1001_system_overview.pdf
2We asked participants to perform eight different common daily indoor activities
which were adapted from [24]

Dynamic Tag

Pre-register Location

Pointing Direction
User-device Vector

Figure 8: Close-by devices are too ambiguous to point and
select; we first compute a set of ambiguous devices, which
is further filtered with gesture (e.g., a left-swipe) or verbal
disambiguation (e.g., “the left one”).

https://www.decawave.com/sites/default/files/dwm1001_system_overview.pdf
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“register this 
      light as Silver!”

“register zone,
    livingroom.”
      

a b

Figure 9: A user can tap at an IoT device and use voice input
to register a name and the spatial location of that device (a);
further, a zone can be registered by walking around a spe-
cific region after entering the registration mode (b).

orientation (in Euler angles) to a vector in the aforementioned UWB
coordinate system. Then based on the user’s current location Pu
and the pre-registered locations of the IoT devices P1, P2, ..., PN , the
system computes argmini ∠(

−−−→
PuPi , v) to select an IoT device that

intersects with the user’s pointing direction. However, as illustrated
in Fig. 8, the problem is ambiguity: for devices that appear too close
to each other from a user’s point of view, it would be difficult to
point exactly at one specific device. Below we discuss Minuet’s
solution for disambiguation. Although prior work in Virtual Reality
(cf. [4]) has explored solutions to a similar problem (i.e., pointing
at virtual objects in 3D), little is known about how disambiguation
can be achieved when pointing at real-world objects (i.e., spatially-
distributed IoT devices) and how to model a user’s performance.
Below we discuss our approach based on [4].

Disambiguation We first find a set of ambiguously selectable
devices

Sambiguous = {i | ∠(
−−−→
PuPi , v) < ϵ} (1)

The value of ϵ is obtained and discussed later in our technical
evaluation. When there is more than one device in the ambiguous
set, Minuet enters an disambiguation mode, indicated by a blink-
ing LED light3 attached to each of the ambiguous devices. Next,
inspired by the formative study, Minuet allows the user to verbally
disambiguate using spatial references, e.g., “the left one” or “the
second one from the left.” To enable spatial references, our system
computes the spatial relationship between each ambiguous devices
based on their relative locations to the user. Alternatively, users
can swipe left or right to go through the set of devices, similar to
switching amongst different application windows in the OS.

5.2 Interacting with an IoT Device
Multimodally

Once an IoT device is selected (possibly with disambiguation), the
user can immediately speak a voice command or continually per-
form a hand gesture followed by pointing.

Processing voice input As with most commercial voice assis-
tants, we stream voice input through a Bluetooth-enabled wireless
ear piece (although other approaches are possible). Users’ speech
is then converted to text [16] and parsed as a syntax tree [15]
3Or in some cases, simply light up all ambiguous lamps or make a sound from all
ambiguous speakers.

(e.g., Fig. 10 shows a representation of the command “increase the
volume”).

Processing gesture input Currently, Minuet supports six differ-
ent gestures (swiping up/down/left/right, wrist rotation clockwise
/ counter-clockwise) aggregatively elicited from participants’ input
in our formative study. Similar to pointing recognition, we take a
data-driven approach to recognize the onset of each gesture, which
is trained with 100 demonstrative examples and 1750 examples of
non-activities. Our Random Forest classifier achieved 98.59% in a
10-fold cross-validation.

Mapping voice + gesture input to controlling IoT devices
We take a frame-based approach [31] to handle voice+gesture input.
As a user points at a device, the system creates an empty frame, e.g.,
{device: [speaker_2]; property: []; action: []; parameter: []},
and starts looking for co-occurred or subsequent voice or gesture
input to fill in the frame.

For voice input, we compare the parsed dependency graph with
the selected device’s repertoire of executable verbal commands,
which we constructed from the corpus collected in the formative
study. For example, the comparison will match “increase the vol-
ume” to “raise the volume” by the DOBJ ‘volume’ while consid-
ering the synonymous ROOT phrases ‘increase’ and ‘raise.’ As a
result, the systemwill update the frame {property: volume; action:

increase; parameter: ‘5%’}4.
For gesture input, we map our gesture set to each IoT device’s

most common controls. Up/down/left/right swipes perform discrete
actions (e.g., swiping up to a speaker increases the volume by a
default delta of 5%) while rotation enables continuous control (e.g.,
counter-clockwise to continuously lower the volume).

For voice+gesture input, e.g., swiping up towards a TV and say-
ing “volume”, the system will partially fill up the frame until it has
enough information to be mapped to a specific command on the
selected device. For example, if the system first detects a swipe-up
gesture, it will realize that for the TV this gesture only maps to
increase(5%) but does not specify a property (because there are
more than one applicable property, e.g., volume and brightness).
Thus the system keeps waiting for further information, e.g., a sub-
sequent voice input of “volume”, which now enables the system to
fill the property slot and to execute a specific command on the TV.

6 TECHNICAL EVALUATION
We conducted a technical evaluation investigating: (i) how accu-
rately the system can locate a user; and (ii) how accurately a user
can point at a target appliance (i.e., ∠(−−−−−−−→PuPtarget, v)). The focus of our
evaluation is to demonstrate the technical feasibility of our pro-
posed voice + gesture interaction with IoT devices; a longitudinal
field study to fully understand the reliability of the proof-of-concept

4‘5%’ is the default value when the parameter is not explicitly specified.

text: “increase” 
label: ROOT

text: “volume” 
label: DOBJ

text: “the” 
label: DET

“increase the volume”tokenized & parsed for dependency graph

Figure 10: An exemplar parse tree of a voice input.
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system is beyond the scope of our paper, which we plan to address
in future work.

6.1 Participants & Apparatus
We recruited 10 users to participate in our evaluation: six males,
four females, aged 21 to 30, all but three had experience using
home assistants, and two are native English speakers. As shown in
Fig. 11, we used the same lab space in the formative study. A 4m×5m
grid (each cell 1m×1m) was marked as references when sampling
the measurement. We selected 5 common household appliances
spatially distributed in 3D space (Fig. 11).

6.2 Localization and Pointing Accuracy
As localization is the immediate step that precedes pointing, we
conducted the first two measurements in the same set of tasks
where participants were asked to point at each appliance at various
locations.

We first introduced the pointing gesture: participants were asked
to extend their arm towards an appliance, similar to our everyday
behavior of referring to an object from afar or showing direction
to someone else.

Participants were standing while performing tasks throughout
the study. We assigned each participant six random locations from
the grid (we did, however, balanced the number of participants’
pointing trials at each intersection to ensure a uniform sampling
across the entire grid). At each location, each participant performed
two rounds of pointing tasks for all five spatially-distributed IoT
devices before moving on to the next location. We did not provide
feedback on whether or not a appliance was successfully selected;
instead a simple beeping sound was played to indicate the comple-
tion of each trial. In total, we collected: 10 participants × 6 locations
per participant × 2 rounds per location × 5 appliances to point at
for each round = 600 data points.

6.3 Analysis & Results
For localization, across all 600 pointing trials, we calculated the
mean error between the ground truth coordinate values5 and the
localization results. As the Z value was fixed for each participant
5Measured by an ACKLIFE 40M Advanced Laser Distance Meter.

1 m

1 m

Light 2 
1.5m

Projector
2.0m

Light 1 
2.5m

Roomba
0.0m

Music Player

1.0m

Figure 11: Room and appliances layout for our technical
evaluation (numbers below appliance names are heights).

(standing), we entered it manually into the system. The overall
mean localization error across all participants was 0.330m (SD =
0.169m).

For pointing detection, 12 out of 600 pointing trials were not
picked up by the system (2% overall). For the other 98% of the
examples, Fig. 12 shows the distribution of ∠(−−−−−−−→PuPtarget, v)—that is,
how much each participant’s pointing deviated from the target
appliance, measured by the angle between the participant-device
vector and the participant’s pointing vector. The result shows that
on average participants’ pointing was off about 9.0◦ (SD=4.7◦) and
collectively 95% of the pointing trials fell within a margin of error of
17.7◦. These findings inform the choice of ϵ ’s value when deploying
Equation 1 for disambiguation.

7 QUALITATIVE STUDY
We invited users to try out our system and gathered their initial
reactions and feedback.

7.1 Participants & Apparatus
We recruited the same 10 participants in the technical evaluation,
as they were already familiar with the pointing part of our system.
The appliances and their spatial layout remained the same (Fig. 11).

7.2 Tasks & Stimuli
Before the tasks started, we provided a quick tutorial of Minuet
for each participant, including the six gestures and exemplar voice
commands. Participants were free to practice how to interact with
Minuet multimodally for five minuets. As shown below, the main
tasks consisted of asking participants to act out three representative
scenarios that encompass interaction examples distributed in our
design space. The bolded texts are the specific tasks participants
performed.

Task I It is reading time. As soon you as you enter the room you
realize it is too dim so youwant the wall-mounted light on, which
is located on the other side of the room above an lounge chair. You
then sit down and read. However, soon you feel sleepy and want to
take a snap. You want the light off without having to stand up and
reach its switch.

Figure 12: The distribution of angular difference—howmuch
participants’ pointing deviated from the target device—
amongst all pointing trials.
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Task II Your dog knocked over a plant and now the floor is covered
with soil. You command the Roomba to clean the dirty area. The
Roomba is loud so youwant themusic player to play somemusic
to cover the noise.

Task III Having finished your slides for tomorrow’s meeting, you
want to rehearse it. You start the presentation using a public
projector in the lab. The slides look good and it is time to go home.
However, before walking out of the room, you realize you just need to
turn off the light above your desk but not the light right next
to it, which is for your neighboring lab mate who is still working.

Immediately after each task, we asked the participant to com-
ment on both the interaction techniques and the system: (i)whether
the voice + gesture interaction style was useful in the tested sce-
nario; (ii) whether the system performed well as you expected; and
(iii)whether the system was easy to use. The entire study was video
and audio recorded.

7.3 Analysis & Results
To analyze the data, we used a method akin to the Affinity Diagram
[7]: we organized notes of participants’ comments to iteratively
develop meaningful and coherent themes that captured their reac-
tions to both the system and the underlying idea of voice + gesture
interaction with IoT devices.

In general, participants (P1-P10) responded positively to many of
our proposed interaction techniques while also pointing out issues
and concerns with some others.

Overall, the participants welcomed the idea of voice + gesture
interaction with IoT devices: “I like the idea of supporting both voice
and gesture command” (P4); “The gestures are very logical, the system
understands my verbal commands well.” (P5); “The voice commands
are flexible” (P6). Some pointed out that Minuet complements exist-
ing voice assistants: “Compare with Alexa, I don’t have to talk if I
don’t want to [but still be able to control].” (P7). “Easy object classifi-
cation without naming or grouping—imagine you have 50 light bulbs,
you can control through embodied interaction” (P2). Pointing, in par-
ticular, was considered an “intuitive” (P1) and expressive—“You can
point to the device you want to control” (P4), ”Pointing to start makes
me feel easy” (P6). Moreover, our scalable and extensible system
also raised some participants’ interest. “Handling multiple devices
in one system is important” (P7), “This system can realize multiple
devices controls with one device” (P1).

Participants also mentioned three main areas for improvement,
mostly related to implementation: (i) Shorten the pointing recog-
nition time (P[1,3,6,10]): currently we employ a 1.5 second time
window (§5) to accommodate for people’s varied speeds of point-
ing motion; future work will experiment using time windows of
multiple sizes to increase responsiveness for fast pointing behav-
iors. (ii) Robustness of speech recognition: eight of our participants
were not native English speakers and two in particular struggled
to be understood by the speech recognition engine, which, in the
future, could be improved by tailoring the recognition to individual
users. (iii) Integrating a microphone into the wearable platform:
currently to ensure quality we use a pair of Bluetooth ear pieces for
sending/receiving audio, which can be replaced with an on-board
component in our next iteration.

8 DISCUSSIONS
We discuss the limitations and directions for future work.

Feedback to users Currently Minuet provides simple audio
and visual feedback to users. Our future work will explore other
types of feedback, e.g., haptics that are amenable to be added on
Minuet’s wearable modules. We will also investigate how to provide
sufficient information without slowing down or distracting users’
interaction with the IoT devices.

Localization Accuracy As reported in §6, the localization po-
sition accuracy of our UWB system is 0.330m. The error might
be induced by various factors, including but not limited to: an-
chors’ geometrical arrangement, and obstacles in the environment
(e.g., furniture). Our future work will apply external filters while
streaming data to improve accuracy.

Our current UWB system provided by DecaWave has a known Z
accuracy problem [21]. While it is beyond the scope of our research
to debug the product, we plan to find data-driven solutions to
mitigate this problem, or explore alternative localization systems
for implementation.

Power consumption Compare with IMU sensors, the UWB
module is highly power-consuming. From our test result, a 500
mAh battery can support 1.5 hours of continuous usage. Our future
work will explore using the IMU sensors to wake up the UWB only
when movement is detected.

IoT devices moved? Currently we only support static registra-
tion of an IoT device and do not track a device if it is moved to a
new position. Nevertheless, updating an IoT’s position is easy, as
the user can simply redo the registration step (Fig. 9).

Fatigue and accessibility Fatigue is a known problem for free-
hand gestures. Although our participants did not report any fatigue
during the study, such problemmight still occur if freehand gestures
are used at a regular basis. A related issue is accessibility—freehand
gestures become unavailable when users have motor difficulty (e.g.,
shoulder injury, arthritis). To address both issues, we plan to explore
the design of voice + alternate ‘hands-free’ pointing techniques,
e.g., using head pose and gaze to interact with IoT devices.

Integrating with smartphones We implemented the mobile
module of Minuet as a wearable device; however, it is possible
to integrate it with other personal devices, such as a smart phone.
Leveraging the phones’ existing IMU, our future work will integrate
a lightweight UWB tag as part of a phone case, which will turn the
phone into a universal IoT remote control, enabling Snap-to-It [13]
style interaction even with IoT devices at a distance.

Virtual canvas for creativity Similar to spatially registering an
IoT device or a static object, Minuet can allow a user to create a vir-
tual canvas on any surface (provided there is a uniformly accurate
X/Y/Z localization). A user can simply tap at two diagonal reference
points on a wall to define a rectangular canvas. The tag’s relative
positions with the reference points enables interactive touch inter-
action on the wall, similar to interaction styles demonstrated in
Wall++ [43].
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