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ABSTRACT 
Because smartwatches are worn on the wrist, they do not 
require users to hold the device, leaving at least one hand 
free to engage in other activities. Unfortunately, this benefit 
is thwarted by the typical interaction model of smartwatch-
es; for interactions beyond glancing at information or using 
speech, users must utilize their other hand to manipulate a 
touchscreen and/or hardware buttons. In order to enable no-
touch, wrist-only smartwatch interactions so that users can, 
for example, hold a cup of coffee while controlling their 
device, we explore two tilt-based interaction techniques for 
menu selection and navigation: AnglePoint, which directly 
maps the position of a virtual pointer to the tilt angle of the 
smartwatch, and ObjectPoint, which objectifies the underly-
ing virtual pointer as an object imbued with a physics mod-
el. In a user study, we found that participants were able to 
perform menu selection and continuous selection of menu 
items as well as navigation through a menu hierarchy more 
quickly and accurately with ObjectPoint, even though pre-
vious research on tilt for other mobile devices suggested 
that AnglePoint would be more effective. We provide an 
explanation of our results and discuss the implications for 
more “hands-free” smartwatch interactions. 
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INTRODUCTION 
Smartwatches are becoming increasingly popular, providing 
on-the-go music, notifications and health monitoring. Worn 
on the wrist, smartwatches do not require users to hold the 
device, leaving at least one hand free to engage in other 

activities. Unfortunately, this benefit is thwarted by the 
typical interaction model of smartwatches; for interactions 
beyond glancing at information or using speech, users must 
utilize their other (i.e., non-outfitted) hand to manipulate a 
capacitive touchscreen (or bezel) and/or hardware buttons. 
The goal of our research is to promote more “hands-free” 
interactions so that smartwatch users can engage in a multi-
tude of activities that define mobility, from carrying objects 
such as a briefcase or a cup of coffee, to performing tasks 
such as opening a door or driving a car. In short, we seek to 
enable no-touch, wrist-only smartwatch interactions. Fur-
thermore, we seek to do this using only sensors that are 
standard on smartwatches, even though it might be advan-
tageous to incorporate additional hardware, so that users 
can enjoy the benefits of “hands-free” interactions on de-
vices that are commercially available today. 

One obvious method of enabling no-touch, wrist-only inter-
actions on smartwatches is to exploit speech recognition. 
Indeed, smartwatches on the market today feature virtual 
assistants that can be invoked using gestures and/or key-
word spotting (e.g., “Hey Siri” on Apple Watch [24], “OK 
Google” on Android Wear [25]). However, mobile envi-
ronments often have too much noise for accurate recogni-
tion. Furthermore, for both social and privacy reasons, users 
may not wish to vocalize their interactions. 

Another method of enabling no-touch, wrist-only interac-
tions is to leverage tilt using built-in IMU sensors that are 
practically ubiquitous on smartwatches. In fact, a wealth of 
prior research has established tilt as a viable interaction 
technique for menu navigation on smartphones and tablets. 
One might assume that previous findings should generalize 
across all mobile devices. On the other hand, the way users 
interact with tilt on a smartwatch may be quite different 
than on a device they can grasp. In this paper, we put this 
assumption to the test. Our contributions are threefold: 
First, we describe how we applied previous research results 
on mobile devices to develop a tilt-based interaction tech-
nique which directly maps the position of a virtual pointer 
to the tilt angle of the smartwatch. We call this AnglePoint. 
Second, we introduce a variation called ObjectPoint which 
objectifies the underlying virtual pointer as an object im-
bued with a physics model. The purpose of ObjectPoint is 
to provide users with a UI metaphor for tilt control. Third, 
we evaluate the two interaction techniques in a controlled 
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user study along a battery of tasks (e.g., menu selection, 
continuous selection, navigation) at both quantitative and 
qualitative levels, and discuss the implications of our results 
for more “hands-free” smartwatch interactions. 

TILT-BASED INTERACTION TECHNIQUES 
In leveraging tilt for no-touch, wrist-only interactions on 
smartwatches, we first looked to the research literature. 
Since Rekimoto (1996) [20], which was one of the earliest 
publications to propose tilt for menu navigation and scroll-
ing, researchers have explored a variety of tilt-based inter-
action techniques on mobile devices. 

In angle-based tilt design, the position of the virtual pointer 
is mapped to the tilt position or angle. On small form factor 
devices, researchers have demonstrated the value of utiliz-
ing tilt for targeting [4,5], scrolling [15] and text entry 
[17,27,28]. In creating AnglePoint, we directly applied the 
same angle-based tilt design of previous research to a circu-
lar watch form factor, as will be further detailed in the next 
Section. 

A variation on angle-based tilt design is rate-based tilt de-
sign, where the angular rate and speed of the underlying 
virtual pointer is mapped to the degree of tilt. A good ex-
ample is the work of Weberg et al. [26] who created a rate-
based tilt technique that moves a cursor on a PDA display 
similar to the way a piece of butter slides on a hot frying 
pan. In creating ObjectPoint, we were inspired by the ob-
jectification of tilt in rate-based tilt design as a method of 
facilitating learning. With ObjectPoint, we also explored 
how best to represent the virtual pointer as an object im-
bued with a physics model. 

Before describing the implementation details of AnglePoint 
and ObjectPoint, it is important to mention that our design 
for the two interaction techniques benefitted from the sys-
tematic, ergonomic analysis of the design space for wrist-
based interactions found in Tilt Techniques [19]. Further-
more, in choosing parameters for the two techniques, we 
sought to create tilt-based actions that would be natural and 
easy to learn, subtle and comfortable to perform, socially 
acceptable, and robust. Consistent with our goal of creating 
no-touch, wrist-only interactions, both techniques were 
designed to be self-contained within the user’s watch-
wearing wrist. 

Prototype 
We implemented AnglePoint and ObjectPoint for round 
smartwatches using the Android Wear operating system and 
interpreting data from the built-in gravity sensors at 50Hz. 
Using rule-based methods, we created a direct mapping 
from the sensor values to either the position of the virtual 
pointer or the acceleration of the virtual object.  

AnglePoint 
For AnglePoint, users tilt the watch and receive immediate 
visual and vibration feedback based on the absolute tilt lev-
el and position of the watch. Using the gravity sensor val-
ues in both the x- and y-axes, we calculated the tilt angle 

and direction of the watch and simply mapped the direction 
to a highlighted region. For example, if users tilt the watch 
outward in the 12 o’clock direction, AnglePoint will imme-
diately highlight menu items in that direction. 

ObjectPoint 
For ObjectPoint, users tilt the watch to control the move-
ment of a virtual object with an underlying physics model. 
The physics model can be adjusted depending on the size of 
the surface (i.e., the watch size), the size of the object, ac-
celeration when tilting the surface, friction of the surface, 
friction of the boundary as the object moves along it, as 
well as the object’s elasticity (i.e., whether it bounces) and 
momentum (i.e., vibration and/or sound feedback when 
hitting the boundary).  

Because making the virtual object correspond to a real-
world object can drive user expectations (i.e., the virtual 
object could serve as a UI metaphor), in our design phase, 
we explored three metaphors for ObjectPoint, each charac-
terized by a unique set of physical properties. These include 
Ball on Floor, Coin on Table, and Butter on Pan (Figure 1). 
When moving the virtual object on the surface, the ex-
pressed characteristics we adjusted were speed of move-
ment, position of the object, and vibration. Several of these 
metaphors also had the advantage of supporting object-
specific actions, e.g., bouncing a ball, or flipping a coin. 

In informal usability testing of the various metaphors on an 
Android Wear device, we found that many physical proper-
ties were not suitable for wrist-only interactions. For exam-
ple, with the high acceleration of Ball on Floor, users found 
it difficult to precisely control the position of the ball, af-
fecting accurate selections. Likewise, with no vibration 
feedback in Butter on Pan, users found it hard to match 
their expectations of movement with the state of the inter-
face. Finally, with the Coin on Table metaphor, if the coin 
was rendered to actual size (e.g., the size of a penny), users 
found it hard to select menus with more than a few items. 

Based on the above considerations, we decided not to go 
with a representation of a real-word object but instead to 
craft our own virtual object with physical properties that 
were more suitable for wrist-based control. For example, 
the virtual object in ObjectPoint varies its size depending 
on the menu resolution (Figure 2), as well as the “appropri-
ate” amount of acceleration, friction, and vibration feed-
back for specific interaction moments. We set the friction 
so that ObjectPoint would be less sensitive to movement as 

 
Figure 1. Initial list of metaphors for ObjectPoint. 

 



compared to AnglePoint given the shakiness of manipulat-
ing a virtual pointer on the wrist. We determined the “ap-
propriate” values through repeated usability testing within 
the research team, as will be detailed later in this section. It 
is important to note that the amplitude and angle that users 
had to tilt in order to trigger actions in either AnglePoint 
and ObjectPoint were the same. 

Start Gesture 
Whether interaction involves angle- or rate-based tilt de-
sign, an important consideration in leveraging tilt at all is its 
reference level. We used absolute flat (all gravity on the z-
axis, zero on the others) as the most natural and intuitive 
reference level to simulate real-world gravity. We defined 
flat as a threshold of within 5.7° from absolute flat for ease 
of use. Furthermore, we introduced a wrist-controlled start 
gesture to invoke smartwatch interactions based on getting 
the tilt of the watch face to be within this flat threshold. 

Initially, we employed a one-step start gesture; namely, 
simply keeping the watch face flat for one second. Howev-
er, when we examined sensor data for several hours of a 
user working inside an office, we observed too many false 
positives with this approach. We tried increasing the flat 
time to reduce false positives, but unfortunately, this made 
the gesture difficult to perform.  

We decided to take advantage of the fact that users normal-
ly raise and tilt their wrist to look at the watch face before 
interacting with it to fashion a natural two-step start gesture. 
The start gesture is simply a concatenation of tilting the 
wrist inward and then making the watch face flat. To assist 
the user with visual feedback, we employed a familiar bub-
ble level UI metaphor to guide the user’s tilt. As shown in 
Figure 3a, after tilting the wrist inward over 23.6°, the 
screen lights up and displays a bubble level, at which point, 
the user simply has to get the bubble into the middle so that 
the watch face is flat (Figure 3b). This must be done within 
a specified amount of time (ttimeout) and the watch face must 
remain flat for another specified amount of time (tflat). 

Ideally, we want tflat to be as small as possible to expedite 
the start of the interaction, and ttimeout to be as long as possi-
ble to give users enough time to flatten the watch face. To 
minimize false negatives, while at the same time invoking 
the least amount of false positives, we decided to eschew 
heuristics and take a data-driven approach. We first asked 

four participants in our research group to perform the start 
gesture many times to see how long it would take them to 
flatten the watch face and stabilize. As shown in Figure 4, 
the majority of the trials were under 1500 milliseconds. 
However, to make sure we provided sufficient time to per-
form the gesture, we conservatively set ttimeout to 2500 milli-
seconds, capturing 93% of the trials.  

Upon setting ttimeout to get the watch face to be flat, we then 
sought the shortest dwell time tflat needed to produce the 
least false positives. As such, we collected naturalistic data 
from three participants in our research group. They were 
asked to wear a smartwatch without interacting with it for a 
total of 17 hours across all three participants. They engaged 
in a variety of activities including working in an office, 
walking, driving, exercising in a gym, hiking, skydiving, 
etc. Examining the data, we found that setting tflat to 350 
milliseconds produced zero false positives.  

Overall, we found that our data-driven values for ttimeout and 
tflat allowed users to both leisurely as well as quickly invoke 
the start gesture. Besides using tilt to start an interaction, 
users also needed a natural way to cancel actions. 

Cancel Gesture 
In order to provide users with a method to back out of mis-
takes or to cancel actions, we created a straightforward can-
cel gesture: users simply have to turn their wrist to the 
backside of the watch by over 36.9°, as if they were in-
specting the buckle or latch of the watch’s band (Figure 3c). 

 
Figure 2. ObjectPoint for menu selection with menu resolution 

4, 8, 12 (a - c) and for continuous selection tasks (d). 

 

 
Figure 3. Start and cancel gestures. Using a bubble level meta-
phor, the user first (a) tilts the wrist, then (b) puts the watch to 
flat to start the interaction. To cancel an action, the user simp-

ly (c) puts the watch to it back. 

 

 
Figure 4. Scatter plot of time for all participants to put the 

watch to flat and stabilize after tilting the wrist. 

 



In informal usability testing, users found this action to be 
natural and easy-to-learn. 

Now that we have described how to start and cancel in no-
touch, wrist-only smartwatch interactions, we delineate how 
to perform discrete and continuous menu selection as well 
as menu navigation using the AnglePoint or ObjectPoint 
interaction techniques. 

Menu Selection 
To make a menu selection, with ObjectPoint, users have to 
simply move the virtual object to a specific menu item. 
With AnglePoint, users have to tilt the watch in the direc-
tion of the menu item. While previous research on tilt-based 
interactions mostly utilized dwell-to-select as a way of 
providing users with more fine-grained control over selec-
tion, the disadvantage of this approach is that the dwell time 
imposes a constraint on how quickly interactions can pro-
ceed. For finer-grained control, we developed a novel selec-
tion technique we call tilt-and-persist-to-select. As the 
name implies, users have to first tilt or move the virtual 
object to an inner circle with a smaller range of motion (i.e., 
same as the flat threshold, within 5.7°), whereupon they 
must continue tilting further to highlight the menu item (i.e., 
when tilt exceeds 17.5°). To complete the menu selection, 
users must bring the smartwatch back to a flat position. In 
other words, keeping the watch tilted in some direction will 
not actually select the menu item. We set these parameters 
because they allowed users to comfortably perform interac-
tions without losing focus on the interface. 

Figure 5 demonstrates how menu selection works on a cir-
cular smartwatch with ObjectPoint and Figure 6 with An-
glePoint. Our tilt-and-persist-to-select technique enables 
users to select from a list of choices by first tilting or mov-
ing the virtual object to the inner circle in the direction they 
intend to select (Figure 5b and Figure 6b), and then con-

tinuing to tilt further to highlight the selection (Figure 5c 
and Figure 6c), and finally bringing the watch back to com-
plete the selection. Note that our tilt-and-persist-to-select 
technique could also potentially be leveraged on 
smartphones and tablets. 

 
Figure 5. Menu selection with ObjectPoint. 

 
Figure 6. Menu selection with AnglePoint. 

 

 
Figure 7. Continuous selection with ObjectPoint. 

 
Figure 8. Continuous selection with AnglePoint. 

 

 

 
Figure 9. Navigation with ObjectPoint. 

 
Figure 10. Navigation with AnglePoint. 

 



Continuous Selection 
ObjectPoint and AnglePoint also allow users to make a se-
lection along a continuous range. Users first make the selec-
tion at whatever direction they intend to start the range se-
lection (Figure 7a-c and Figure 8a-c), maintain the selection 
by rolling to the direction they intend to end the range (Fig-
ure 7d and Figure 8d), and finally bring the watch back 
from that end direction to complete the continuous selec-
tion. In the ObjectPoint version of continuous section, the 
entire action is akin to dropping a yo-yo through the inner 
circle and swinging it like a pendulum. 

Navigation 
With the menu selection techniques described above, users 
can navigate through a hierarchy of menus in piecemeal 
fashion by selecting a menu item (Figure 9b and Figure 
10b), receiving visual feedback of where they are (Figure 
9c and Figure 10c), making any necessary corrections with 
the cancel gesture (Figure 9d and Figure 10d), and continu-
ing on to the next menu selection. 

RELATED WORK 
Besides previous research on tilt-based interactions for mo-
bile devices, our interaction techniques build on several 
other areas of prior investigation: interaction techniques for 
wrist-worn devices, and bare-hand gesture interactions. 

Interaction Techniques for Wrist-worn Devices 
Recently, wearable devices such as smartwatches have re-
ceived a great deal of attention and interest as they have 
become more powerful, enabling new applications through 
glances and micro-interactions. However, input and output 
on small devices like smartwatches remains limited. A 
number of research projects have explored increasing the 
input capabilities of smartwatches and increasing the 
amount of information shown on a smartwatch.  

While speech recognition is the primary method of text 
input on smartwatches, as discussed previously, for both 
social and privacy reasons, users may prefer other options 
such as ZoomBoard [16] and Swipeboard [3], which use 
iterative zooming and swiping on the touch screen to enable 
text entry on ultra-small devices. 

Utilizing space on wrist-worn devices to provide input has 
also been an active area of research. Ashbrook et al. [1] 
explored round wristwatch interactions using the bezel for 
displaying interfaces and touch interactions. EdgeTouch 
[14] demonstrated a set of grasp gestures by enabling touch 
sensing on the edge of the device. Xiao et al. [29] used the 
watch face as a mechanical interface to enhance interactions 
on smartwatches. NanoTouch [2] used touch on the back-
side of the small screen devices to avoid finger occlusions. 
Consisting of multiple touch-sensitive segments, Facet [13] 
enabled pose detection, as well as touch interaction to span 
across multiple segments.  

Using space around the watch for input has also been ex-
plored. Skin buttons [11] projected icons onto the skin area 
around the watch. Abracadabra [7] used a finger-worn 

magnet and magnetometer on the device and enabled finger 
tacking and gesturing above the watch. Gesture Watch [10] 
used infrared proximity sensors to sense hand gesture made 
over the display. 

While related research offers promising input directions for 
smartwatches, they do not allow users to interact with a 
smartwatch using only the watch wearing hand. Further-
more, many techniques require instrumenting the watch 
with additional hardware, unlike ObjectPoint and Angle-
Point, which use the standard built-in inertial sensors. 

Bare-hand Gesture Interactions 
More related to our approach, people have proposed sys-
tems to provide bare-hand gesture interaction in many ways. 
Saponas et al. [22] demonstrated real-time finger gesture 
recognition for interactions using EMG signals. Skinput [8] 
sensed vibration on the skin to detect taps on various loca-
tions of the hand and forearm. GestureWrist [21] allowed 
users to interact with wearable computers using gesture-
based commands on a wristband-type input device that rec-
ognizes hand gestures and forearm movements. Pinch-
Watch [12] proposed a one-handed device with a wrist-
worn display for one-handed micro-interactions by captur-
ing gestures with a chest-worn camera. 

On smartwatches specifically, Xu et al. [30] investigated 
using smartwatch-measured motion to identify users’ hand 
and finger gestures for in-air finger-writing. Porzi et al. [18] 
recognized smartwatch-based gestures to activate functions 
on smartphones for visually impaired people. Google re-
cently released updates to Android Wear to enable scrolling 
through notifications with a flick of the wrist [6].  

One limitation of these gesture-based systems is that they 
are not easily scalable, and when increasing the number of 
supported gestures, it not only requires the users’ cognitive 
load to remember them, but also increases the difficulty for 
the recognition system to work robustly. When performing 
gestures to control a device worn on the gesture detecting 
hand, users often lose sight of the interface itself. Our tilt-
based techniques maintain the visual feedback of the inter-
face by detecting small movement of the wrist; and by us-
ing control models that users are familiar with. ObjectPoint 
maps the movement with real-time interface changes, re-
leasing the cognitive load of remembering gestures. 

USER STUDY 
Because the effectiveness of AnglePoint and ObjectPoint, 
which we denote as the independent variable Control Mod-
el, may depend on the number of menu items, which we 
denote as the independent variable Menu Resolution, we 
conducted a 2 (Control Model) × 3 (Menu Resolution) with-
in-subjects factorial design experiment, where participants 
used both AnglePoint and ObjectPoint in counter-balanced 
order. Menu Resolution, however, was always presented in 
ascending (smallest to largest) order to allow for learning. 
As our dependent variables, we examined how well Control 
Model at various Menu Resolution facilitated menu selec-



tion, continuous selection and navigation measures. In par-
ticular, for menu selection, we measured task completion 
time, error rate, and the number of failed attempts before a 
success. For continuous selection, we measured task com-
pletion time, error rate, and deviation of start and end an-
gles. Finally, for menu navigation, we measured task com-
pletion time, and number of deletes per task. 

Hypotheses 
From previous research, we held the following hypotheses: 

• ObjectPoint will be easier to learn and understand than 
AnglePoint because people will have a better understand-
ing of how to control their tilt with a virtual object. 

• For menu selection and navigation, users will be able to 
perform both tasks quickly and accurately in either Ob-
jectPoint or AnglePoint when the screen is divided into 
four regions. However, with higher menu resolutions 
where the screen is divided into eight or twelve parts, 
AnglePoint will experience greater difficulties than Ob-
jectPoint. 

• For continuous selection, users will have better control 
using ObjectPoint than using AnglePoint, again because 
of their understanding of the physics of the virtual object. 

Participants and Apparatus 
We recruited 20 participants (five females) from an IT 
company with an age range of 24 to 44 (M = 28.4). Their 
occupations included student, software engineer, IT sup-
port, and service operations. Although eight participants 
reported wearing watches on a daily basis, none wore 
smartwatches. Only one participant wore a fitness tracker. 

For the experiment, we used an LG Watch Urbane running 
Android Wear 5.1.1. We asked participants to wear the de-
vice on whichever wrist they would normally wear a watch. 
19 out of 20 participants wore the watch on their left wrist.  

Procedure 
After informed consent and a brief introduction, partici-
pants first learned and practiced start and cancel gestures in 
15 trials. Throughout the experiment, participants utilized 
the start gesture to begin each session and the cancel ges-
ture to back out of mistakes. 

For the start gesture, we collected 20×46=920 testing in-
stances of start gestures from all participants. Among all 
instances, only 1.63% (SD = 3.30%) of the time participants 
needed to perform the start gesture more than once. When 
asked to rate how easy it was to perform the start and cancel 
gestures along a Likert scale of 1 to 7, participants rated 
both the start gesture (M = 6.25, SD = 1.02) and cancel ges-
ture (M = 6.30, SD = 0.80) to be very easy to perform.  

For each Control Model, participants performed three tasks: 
menu selection, continuous selection, and navigation. The 
order of tasks was fixed since subsequent tasks depended 
on knowing how to perform the previous task. They were 
instructed to complete each task “as quickly and as accu-

rately as possible” without sacrificing accuracy for speed 
and vice versa. 

For menu selection, participants were asked to select items 
from circular menus with 4, 8 and 12 Menu Resolution 
items. The target menu item was highlighted in blue as 
shown in Figure 5a and Figure 6a. When participant cor-
rectly selected the target, visual feedback was shown in 
green (Figure 5c and Figure 6c); otherwise, in red (Figure 
5d and Figure 6d). Participants were required to perform 
each menu selection task until they succeeded. During prac-
tice, participants performed menu selection of each menu 
item in a clockwise fashion for each of the three menu reso-
lutions 4, 8 and 12. For testing, they completed 24 tasks in 
one session for each menu resolution, where the position of 
the menu item was randomized.  

For continuous selection, participants were asked to select 
ranges of 90 degrees at clock positions along the circular 
boundary of the smartwatch. As shown in Figure 7a and 
Figure 8a, the start angle was marked with blue and the 
target range was delineated with white ticks at 5 degree 
intervals. When a participant’s selected start and end angles 
deviated less than 45 degrees from the target angles, the 
selection was accepted, and visual feedback was given in 
green (Figure 7c-e and Figure 8c-e); otherwise, it was 
shown in red (Figure 7cfg and Figure 8cfg). If the selection 
was rejected, participants were required to perform the se-
lection again until they succeeded. During practice, partici-
pants selected ranges of 90 degrees starting at 3 / 6 / 9 / 12 
o’clock positions in both clockwise and counterclockwise 
directions. For testing, they completed 24 tasks of selecting 
90-degree ranges, half clockwise and half counterclockwise, 
starting at each clock position in randomized order. 

For navigation, participants were asked to navigate through 
a sequence of menu items at various resolutions; in particu-
lar, [N/E/S/W] directions for resolution scale of 4, 
[N/NE/E/SE/S/SW/W/NW] directions for resolution scale 
of 8, and [1 to 12] clock hours for resolution scale of 12. A 
sequence of 4 menu items was first displayed for 3 seconds 
(Figure 9a and Figure 10a). After participants made a selec-
tion (Figure 9b and Figure 10b), their current progress on 
the sequence was displayed for 1 second. When their selec-
tion matched the current digit, that digit was highlighted in 
green (Figure 9c and Figure 10c), otherwise in red (Figure 
9d and Figure 10d). For incorrect selections, participants 
were required to perform the cancel gesture to delete their 
current menu item selection. All menu items had to be cor-
rectly entered in sequence in order to complete the task. 
During practice, participants completed one task for each of 
the three menu resolutions of 4, 8 and 12. For testing, they 
completed four tasks for each of the menu resolutions. We 
included navigation as a third task in order to simulate a full 
end-to-end scenario instead of only focusing on single tasks. 
As such, users had to navigate an interface by first perform-
ing an action, then based on feedback, plan and perform the 
next action. 



After performing all three tasks using ObjectPoint or An-
glePoint, participants were asked to complete a question-
naire where they rated the method’s learnability, under-
standability, comfort, usefulness, social acceptability, per-
ceived speed, accuracy, and satisfaction along a Likert scale. 
At the end of the study, participants were also asked to rank 
the two techniques along the same dimensions. 

In total, the study took approximately 60 minutes and par-
ticipants were compensated with corporate meal cards.  

RESULTS 
For menu selection and navigation tasks, we performed a 
factorial repeated-measures ANOVA with Control Model 
and Menu Resolution as independent variables. For contin-
uous selection tasks, we used only Control Model as the 
independent variable. For our statistical analyses, we used 
the Greenhouse-Geisser correction for correcting violations 
of sphericity and post-hoc tests using a paired t-test with the 
Bonnferroni correction.  

Menu Selection 
As performance measures, we measured task completion 
time, error rate, and the number of failed attempts before a 
success. Task completion time was defined as the total time 
in milliseconds for the participants to select the target, start-
ing from the moment instructions were displayed. Error rate 
was computed as the percentage of menu selection tasks 
that the participants failed at their first attempt. The number 
of failed attempts before success was also tracked to assess 
the difficulty of selecting the correct target. 

Average Task Completion Time 
We found a significant main effect of Control Model on 
average task completion time, F(1, 479)=182.51, p<.0001. 
Post-hoc analyses revealed that for all menu resolutions, the 
ObjectPoint model took significantly less time than the 
AnglePoint. Not surprisingly, we also found a significant 
main effect of Menu Resolution on average task completion 
time, F(1.56, 747.24)=387.42 with 12 menu items taking 
longer 8 menu items, and 8 taking longer than 4.  

Interestingly, we found a significant interaction effect be-

tween Control Model and Menu Resolution, F(1.56, 
747.24)=31.58, p<.0001. As shown in Figure 11, as the 
menu items increased, the disparity in average task comple-
tion time for ObjectPoint vs. AnglePoint also increased.  

Average Error Rate 
We found a significant main effect of Control Model on 
average error rate, F(1, 19)=387.12, p<.0001. Post-hoc 
analyses revealed that for menu resolutions 8 and 12, error 
rate in ObjectPoint was significantly lower than in Angle-
Point. Not surprisingly, we again found a significant main 
effect of Menu Resolution on average error rate, F(2, 
38)=136.90, p<.0001. 

Similar to the results for task completion time, we found a 
significant interaction effect between Control Model and 
Menu Resolution, F(1.26, 23.94)=66.93, p<.0001. As 
shown in Figure 12, we again observed that as menu resolu-
tion increased, AnglePoint increased the error rate signifi-
cantly more than ObjectPoint. 

Average Number of Failed Attempts Before Success 
We found a significant main effect of Control Model on 
average number of failed attempts before success, F(1, 
479)=249.79, p<.0001. Post-hoc analysis revealed that for 

 

 
Figure 11. Average task completion time for each Control 

Model and Menu Resolution for menu selection tasks. Error 
bars represent the standard error of the mean. (N=480) 

 
Figure 12. Average error rate for each Control Model and 

Menu Resolution for menu selection tasks. Error bars repre-
sent the standard error of the mean. (N=20) 

 

 

 
Figure 13. Average number of failed attempts before success 
for each Control Model and Menu Resolution for menu selec-

tion tasks. Error bars represent the standard error of the 
mean. (N=480) 



menu resolutions 8 and 12, the number of failed attempts in 
ObjectPoint was significantly lower than in AnglePoint. 
Not surprisingly, we again found a significant main effect 
of Menu Resolution on average number of failed attempts, 
F(1.46, 728.08)=145.67, p<.0001.  

Again, similar to task completion time and error rate, we 
found a significant interaction effect between Control Mod-
el and Menu Resolution, F(1.26, 699.34)=100.12, p<.0001. 
As shown in Figure 13, we again observed that as menu 
items increased, AnglePoint exhibited significantly more 
failed attempts than ObjectPoint. 

Continuous Selection 
For continuous selection, we measured task completion 
time, error rate, and deviation of start and end angles as 
our dependent variables. Deviations of start and end angles 
were measured by the degrees to which the participant’s 
selection deviated from the target start and end angles. 

Although we did not find any significant main effect of 
Control Model on task completion time, we did find that the 
average error rate in ObjectPoint (M = 9.58%, SD = 8.56%) 
was significantly lower than in AnglePoint (M = 28.33%, 
SD = 12.21%), F(1, 19)=38.67, p<.0001. In particular, 
looking more closely at where participants deviated from 
the target, we found that the average deviation of the end 
angle in ObjectPoint (M = 8.65, SD = 8.35) was significant-
ly lower than AnglePoint (M = 11.34, SD = 10.29), F(1, 
479)=22.50, p<.0001. Interestingly, we did not find a sig-
nificant difference for the start angle. We discuss possible 
explanations in the Discussion section. 

Navigation 
For menu navigation, we measured task completion time, 
and number of deletes per task as our dependent variables. 

Average Task Completion Time 
We found a significant main effect of Control Model on 
average task completion time, F(1, 79)=135.31, p<.0001. 
Post-hoc analyses revealed that for menu resolutions 8 and 
12, task completion time in ObjectPoint was significantly 
lower than in AnglePoint. Again, not surprisingly, we also 
found a significant main effect of Menu Resolution on aver-

age task completion time, F(1.56, 123.24)=168.93. 

Similar to previous tasks, we found a significant interaction 
effect between Control Model and Menu Resolution, 
F(1.68, 132.72)=62.80, p<.0001. As shown in Figure 14, 
we again observed that as the menu items increased, the 
disparity in average task completion time for ObjectPoint 
vs. AnglePoint also increased. It is important to note that 
task completion time included 1 second feedback delays 
between actions (Figure 9cd and Figure 10cd). In real us-
age, users would skip the delay once they became familiar 
with the interface. Therefore, for navigation with four menu 
items in all four levels, the action time is about 5 seconds.  

Average Number of Deletes 
We found a significant main effect of Control Model on 
average number of failed attempts before success, F(1, 
79)=84.49, p<.0001. Post-hoc analysis revealed that for 
menu resolutions 8 and 12, number of deletes in Ob-
jectPoint was significantly lower than in AnglePoint. Not 
surprisingly, we again found a significant main effect of 
Menu Resolution on average number of failed attempts, 
F(1.56, 123.24)=59.64, p<.0001. 

Similar to all previous tasks, we found a significant interac-
tion effect between Control Model and Menu Resolution, 
F(1.74, 137.46)=38.81, p<.0001. As shown in Figure 15, as 
menu items increased, AnglePoint exhibited significantly 
more number of deletes than ObjectPoint. 

Subjective Ratings 
Participants’ subjective ratings of the two control models 
are shown in Figure 16. Overall, participants rated control-
ling the watch using ObjectPoint higher, and preferred it 
over AnglePoint across all dimensions with the greatest 
differences in Perceived Accuracy (where the Questionnaire 
statement was “For one-handed interaction, I can accurate-
ly control the watch using this method”) and Satisfaction 
(where the statement was “I would use this method to con-
trol the watch with one hand”).  

User Feedback 
In open comments, participants wrote statements along the 
lines of: “The [ObjectPoint] method was not only faster and 

 
Figure 14. Average task completion time for each Control 

Model and Menu Resolution for navigation tasks. Error bars 
represent the standard error of the mean. (N=80) 

 

 
Figure 15. Average number of deletes for each Control Model 
and Menu Resolution for navigation tasks. Error bars repre-

sent the standard error of the mean. (N=80) 

 



more accurate, but also fun to play with. (P2)” For Angle-
Point, we received, “Without the ball as reference, it's more 
difficult to operate (P9)” as well as “It's surprising how this 
small change makes so much difference. The confidence I 
got from having feedback made me go faster, feeling that at 
any moment I can make a correction based on the feedback 
(P2)”. Several participants also mentioned how ObjectPoint 
could be applied for rehabilitation training “The Ob-
jectPoint feedback is a great training mechanism (P10)” as 
well as accessibility: “Very good idea, helpful and mean-
ingful invention, especially for disabled group (P15)” 

DISCUSSION 
We discuss the implications of our results for no-touch, 
wrist-only smartwatch interaction, and other factors for 
applying ObjectPoint and AnglePoint in a larger context. 

Learnability 
In our results, we observed that both ObjectPoint and An-
glePoint were easy to learn and understand, even with the 
minimal training we provided in the studies. However, we 
confirmed our hypothesis that ObjectPoint was easier to 
learn and understand than AnglePoint based on the Likert 
scale ratings shown in Figure 16. From user feedback, we 
believe ObjectPoint provided users with a better under-
standing of how their tilt motions would be translated into 
interface actions due to the underlying physics model. As 
articulated in the user comments presented above, this gave 
them “confidence” to move more quickly and accurately. 

Menu Selection and Navigation 
Looking at the performance measures for menu selection 
and navigation, users were able to perform the two tasks 
quickly and accurately in both ObjectPoint and AnglePoint 
when the screen was divided into just four regions. Howev-
er, as the screen was divided into eight or twelve parts 
(Figure  to Figure 15), we observed interaction effects for 
all measures, including average task completion time, aver-
age error rate, average number of failed attempts before 
success, and average number of deletes. With higher menu 
resolution, ObjectPoint performed significant better than 

AnglePoint. We believe this interaction effect was influ-
enced by the way in which we provided finer-grain control 
via tilt-and-persist and the inner circle; recall that user had 
to first tilt or move the object within the inner circle in the 
direction they intended to select (Figure 5b and Figure 6b), 
and then further tilted to make the selection. In ObjectPoint 
(Figure 5b), users can see exactly where they are currently, 
and make changes and corrections to the tilt based on the 
position of the virtual object. However, in AnglePoint (Fig-
ure 6b), when a menu item is highlighted, users do not 
know whether or not they are close to the tilt boundaries of 
that menu item, and when they tilt further to make the se-
lection, they run into the risk of selecting the adjacent menu 
item. The risk of this happening is higher when the menu 
resolution is higher, since the potential distance of tilt be-
tween the current position and the boundaries are smaller, 
making it harder to keep the tilt within the item boundaries 
during tilt-and-persist. 

Continuous Selection 
For continuous selection, users demonstrated better tilt con-
trol using ObjectPoint, with significantly lower error rate 
than AnglePoint. However, we found a significant differ-
ence for the deviation of end angle, but not for the start an-
gle. Since we divided the screen into 5 degree intervals, the 
initial selection at the start angle is similar to menu selec-
tion with a resolution of 360 / 5 = 72. At such a high resolu-
tion, the potential benefit of feedback and correction in Ob-
jectPoint would not make a difference for selection, result-
ing in the non-significant difference in deviation of start 
angle. On the other hand, after the users roll to the direction 
they intend to end the range (Figure 7d and Figure 8d) and 
bring the watch back from that direction to complete their 
selection, for ObjectPoint, because of the friction between 
the virtual object and the outer boundary, it maintains the 
direction better. However, for AnglePoint, the end angle 
will always be the last absolute direction of tilt before re-
turning back to a flat state. This could explain the signifi-
cant difference in deviation of the end angle. 

Contrast with Previous Research 
In studies by Oakley and O’Modhrain [15], and Teather and 
MacKenzie [23], users were more efficient and accurate in 
controlling items on a menu with angle-based mapping of 
tilt than rate-based mapping on a PDA or tablet. Our results 
contradicted previous work in that ObjectPoint, a rate-based 
technique, was superior to AnglePoint across all metrics – 
to some extent, because AnglePoint was based on previous 
studies, it served as a baseline.  

Furthermore, Oakley and O’Modhrain [15] observed that 
the primary benefit of angle-based tilt control is the lack of 
reliance on any hidden virtual model. We found this sur-
prising given that the advantage of ObjectPoint seemed to 
be that the underlying physics model of the virtual object 
drove user expectations and helped them to make correc-
tions. This contrast may be due to fundamental differences 
in the tasks; previous research investigated tilt levels along 

 
Figure 16. Likert scale ratings for ObjectPoint and AnglePoint 
(1 to 7, 7 as strongly agree). Error bars represent the standard 

error of the mean. (N=80) 

 



one direction, while our techniques focused more on tilt 
along a circular menu. Further comparisons with previous 
research results are difficult due to the variations in experi-
mental paradigm and conditions. 

Menu Layout 
Previous work has discussed discretizing functions for raw 
tilt angles to improve angular tilt control using linear, quad-
ratic and sigmoid functions [19]. Our study used uniform 
sizes for menu items in each resolution to facilitate easier 
evaluations of the two Control Mode techniques. However, 
we noticed differences in difficulty for different menu item 
locations in our user study (Figure 17). This could be im-
proved by applying different sizes of menus in different 
locations, based on ergonomic wrist capabilities [19]. We 
plan to investigate this further in future work.  

Extending to Other Form Factors 
Even though a bevy of round watches are being released to 
the commercial market (e.g., LG Watch Urbane, Moto 360, 
Huawei Watch, LG G Watch R), their user interface de-
signs are still mostly derived and modified from square 
watches, such as simply moving the UI elements inside the 
circular boundary. Our techniques take full advantage of the 
round form factor with interactions specifically designed 
for circular menus (e.g., continuous selection along the cir-
cular physical boundary). That said, we believe ObjectPoint 
and AnglePoint can be extended to other form factors. For 
example, for square smartwatches, the inner circle and outer 
circle can be adapted to inner square and outer square for 
selection. Furthermore, the edges of the physical screen can 
still be used to select a range. Even for wristbands (e.g., 
Microsoft Band), ObjectPoint can be applied with one-
dimensional movement and actions, similar to the metaphor 
of sliding a piece of butter on a hot pan [26]. 

Example Application 
Taking advantage of ObjectPoint interactions and interface 
design, we developed a demo music application as shown in 
Figure 18. The screen is divided into four parts: users can 
switch to the previous and next songs using menu selection 
techniques for the left and right regions, users can toggle 
pause and play by highlighting the top region, and finally, 

they can control volume by using continuous selection in 
the bottom region. 

FUTURE WORK 
We see many avenues for future work. ObjectPoint and 
AnglePoint use a start gesture to invoke users to start the 
interactions when the watch is flat. However, as mentioned 
by one of our participants, it might be hard to keep the 
watch face flat in all scenarios, e.g., when riding on a 
bumpy bus, or lying on the bed. If users are in situations 
such as riding on a bumpy bus, changing the physical prop-
erties of the object could be employed to compensate for 
errors, e.g., decreasing acceleration of the virtual object and 
increasing simulated friction of the surface. On the other 
hand, if users are lying on the bed, where they might want 
to define a more neutral position, other gestures could po-
tentially be used to redefine the neutral level. 

Another avenue for future work is enabling eyes-free, no-
touch, wrist-only interactions with ObjectPoint. For this, we 
would need to provide appropriate audio and haptic feed-
back that matched the physics model. With our current im-
plementation of ObjectPoint, the tactile feedback could not 
be localized, and we didn’t integrate audio feedback. There-
fore, when taking away the visual feedback, which is the 
only thing left, there’s no difference between the two mod-
els, and users have nothing to rely on to assist the interac-
tion. As future work, we would like to investigate how lo-
calized tactile feedback (e.g., Skin Drag Displays [9]), and 
sound associated with the movement of an object could 
support better wrist-only eyes-free smartwatch interactions. 

CONCLUSION 
In this paper, we presented two tilt-based interaction tech-
niques for no-touch, wrist-only interactions on smartwatch-
es: AnglePoint, which directly maps the position of a virtual 
pointer to the tilt angle of the smartwatch, and ObjectPoint, 
which objectifies the underlying virtual pointer as an object 
imbued with a physics model. We evaluated the two inter-
action techniques in a user study, and found that Ob-
jectPoint was superior to AnglePoint across all metrics. The 
techniques presented in this paper can be utilized to pro-
mote more “hands-free” smartwatch interactions.  

 
Figure 18. A music application taking advantage of  

ObjectPoint interactions. 

 

 
Figure 17. Average error rate of individual menu items for 
menu selection with menu resolution 12, using ObjectPoint. 
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