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ABSTRACT)
User identification and differentiation have implications in 
many application domains, including security, personaliza-
tion, and co-located multiuser systems. In response, dozens 
of approaches have been developed, from fingerprint and 
retinal scans, to hand gestures and RFID tags. In this work, 
we propose CapAuth, a technique that uses existing, low-
level touchscreen data, combined with machine learning 
classifiers, to provide real-time authentication and even 
identification of users. As a proof-of-concept, we ran our 
software on an off-the-shelf Nexus 5 smartphone. Our user 
study demonstrates twenty-participant authentication accu-
racies of 99.6%. For twenty-user identification, our soft-
ware achieved 94.0% accuracy and 98.2% on groups of 
four, simulating family use.  
Author)Keywords)
Touchscreen input; mobile devices; capacitive sensing; user 
identification; user differentiation; groupware. 
ACM)Classification)Keywords)
H.5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces: Input devices and strategies. 
INTRODUCTION)
Understanding who is interacting with a computing device 
has many implications and applications. It is most often 
used for authentication [1,5,10], where only certain users 
are permitted to use the system or privileged functionality. 
It can also be used for personalization [9,12], where differ-
ent users can have custom settings, browser bookmarks, 
email accounts, favorite applications and so on. Further-
more, knowing who is performing what action is also tre-
mendously valuable in co-located computer supported col-
laborative work [2,13] and games [4], for example, on large 
interactive tabletops. 

Recently, Bodyprint [6] demonstrated how unmodified, 
commodity touchscreens can be used to identify and au-

thenticate users. This is done by capturing a capacitive “im-
age” of various body parts when they are pressed to the 
touchscreen, for example the ear. We extend this paradigm 
with a new “hands-flat” pose, which reveals more distin-
guishing user features, enabling higher recognition accura-
cies. During evaluation, Bodyprint used a single round of 
data collected in one sitting, and ran a post hoc cross-fold 
analysis. We extend this feasibility study to additionally 
validate stability over time, where users attempt to authenti-
cate at a later time. We also extend the study to account for 
real world issues, such as hand moisture level and accura-
cies amongst small groups of users. 
IMPLEMENTATION)
Modern projected capacitive touchscreens work by detect-
ing changes in a projected electric field caused by a proxi-
mate finger. The touch controller collects capacitance 
measurements across the touch-sensing grid (Figure 1), 
which are taken together to form a capacitive image. This 
image is generally used inside the touch controller to re-
solve the pixel position of touch contacts, which are subse-
quently reported to the operating system. 

We developed our proof-of-concept CapAuth implementa-
tion on a Nexus 5 smartphone running Android 5.0.1, with a 
Linux kernel specially modified to provide access to the 
Synaptics ClearPad 3350 touchscreen controller’s debug-
ging interface. We use this interface to obtain the 16-bit 
15×27 capacitive image at 25 FPS. Each pixel of the image 
corresponds to a 4.1mm×4.1mm square on the screen. The 
pixel values are the picofarad (pF) differences between the 
baseline measurement and current measurement. CapAuth 
uses the capacitive image to derive a series of features de-
signed to capture material (e.g., varying dielectric effects 
from skin thickness) and geometric (e.g., heights of fingers) 
variations between the hands of different users. 
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Figure 1. Capacitive image on Nexus 5. Left: hand position on 

the screen. Right: resulting capacitive image. 

 

 



Features)
We compute the following set of 550 features from the ca-
pacitive image: each raw data point as an independent fea-
ture, mean values of the capacitive image / each row / each 
column, length of each finger, number of pixels with a val-
ue of over 15pF for each finger, sum of value of each fin-
ger, coordinates of the 9 points (overall centroid / four fin-
gertips / centroids of each finger), and the distances and 
angles of each of the two points among the 9 points. Using 
feature selection, we found that a subset of 150 features was 
sufficient for reasonably accurate classification.  
Classification)Algorithm)
The full feature set is used to train quadratic-kernel support 
vector machine (SVM) classifiers using the Weka machine-
learning toolkit [3]. For authentication, we use a binary 
classifier specific to each user, which distinguishes between 
that user and all other users. For identification, we train a 
multi-class, one-to-one classifier, which uses binary classi-
fiers trained to distinguish each pair of users. Each binary 
classifier output is treated as a vote for that user, and the 
votes are tallied to form the final classifier output. 
Correct)Hand)Placement)
We use a separate process for ensuring that users place their 
hands on the screen in a standard fashion; consistency is 
important for reliable user differentiation. A separate binary 
SVM classifier is trained to distinguish between correct and 
incorrect hand placements. This classifier uses the same 
feature set described in the previous section. 

This classifier is exposed to users through a basic visualiza-
tion. Our application starts with a grey screen with a sug-
gestive handprint rendered on screen (Figure 2). Improper 
placements cause the screen to turn red, indicating the user 
should reposition their hand. The screen turns green when 
an acceptable handprint is detected. 
Classifier)Confidence)
In our real-time classifier running on the phone, we use the 
binary classifier vote tallies to compute a confidence score 
for each class, outputting the class corresponding to the 
highest confidence score. In the event of a tie, the classifier 
outputs a null result meaning “not confident”, after which 
the user interface will prompt the user to “try again”. 
RELATED)WORK)
Many systems in the literature aim to extract biometric data 
from touchscreens; see e.g., Blažica et al. [1] for a survey. 
However, most such systems use camera-based setups to 
image the user’s hand at high resolution, in contrast to our 
low-resolution capacitive image. Fiberio [5] uses a high-
resolution camera to capture fingerprints. HandsDown [12] 
uses a diffuse-illumination interactive tabletop and hand 
contours for user identification (see e.g., [7,11] for more 
discussion on hand geometry-based approaches). MTi [1] 
uses the coordinates of the five finger tips for user identifi-
cation. Mock et al. [8] used an FTIR screen and blob-
geometry analysis for user identification from typing.  

Carpus [9] used a high-resolution overhead camera and the 
back of users’ hands as identifiers. Capacitive Fingerprint-
ing [4] used a special sensor attached to an infrared touch 
panel to measure the swept-frequency impedance of a user. 
Vu et al. [14] authenticated users on a capacitive 
touchscreen by using a finger-worn ring device to inject a 
pattern of false events onto the screen. Finally, “Biometric-
Rich Gestures” [10] used five-finger touch gestures and 
movement of palm and fingertips for authentication. In con-
trast to these methods, our approach uses low-resolution 
commodity touchscreens found in nearly every “smart” 
device today, without needing user or device augmentation. 

As discussed previously, we extend work presented in 
Bodyprint [6], which authenticated users via various body 
parts (e.g., ear, fist, and hand grips) pressed against a con-
ventional capacitive touchscreen. Compared with Body-
print, we demonstrate improved accuracy (99.6% authenti-
cation precision with 5.5% false rejection rate), live classi-
fication, accuracy persistence and moisture robustness, all 
with more users (20 participants). 
EVALUATION)
We recruited 20 participants, gender balanced, with a mean 
age of 26.0. Our primary study consisted of five sessions of 
handprint data collection, each separated by a short break to 
avoid over-fitting to transient physical properties of the 
hand and repetitive (and thus similar) placement of the hand 
by the user. In total, the study took approximately 30 
minutes and participants received $10 for their time. 

Following a brief demonstration of proper hand placement 
on our Nexus 5 prototype, participants proceeded to record 
one session of data. Participants placed their right hand 
down onto the screen in a natural fashion and pressed the 
physical volume button (located on the side of the device) 
to record one handprint trial. Participants were asked to lift 
their hands from the screen between trials before replacing 
them, adding variety to the collected data. Fifty handprints 
were collected in each session. In total, four sessions were 
collected in the manner, producing 4000 handprint instances 
(20 participants × 4 sessions × 50 trials).  

One additional and special session collected improper hand 
placements, which we use to train our “correct hand place-
ment classifier”. In this session only, users were instructed 
to put their hands on the screen in a way that did not match 
the onscreen guide. This produced 1000 improper 
handprints (20 participants × 1 session × 50 trials). 

   
Figure 2. CapAuth classification. Left: initial state. Middle: 

unauthorized user (red). Right: authorized user (green). 



Thus in total, there was five data collection sessions. In the 
breaks between these sessions, participants were asked to 
perform an activity. After round one, they completed a sur-
vey. After round two, they traced an outline of their hand on 
paper. After round three, they completed another survey, 
and in the last break, they washed and dried their hands. We 
included this hand-washing step to see if altering the mois-
ture level (and likely the capacitance) of the hands would 
affect classification.  

We also asked 10 of our participants to return for a follow-
up study several days later (3 female, mean age 25.2, mean 
gap of 8.0 days). Using all handprint data collected from 
procedure above (20 participants), our Nexus 5 was initial-
ized with participant-specific authentication and identifica-
tion classifiers. Each participant then collected handprints 
following the same procedure as before. However, this time, 
classification was performed in real-time on the phone for a 
“live” experimental result. Of note, the interface was the 
same as the first study, which lacked graphical feedback 
(thus preventing participants from adjusting their hand pose 
to match classification results). 
RESULTS)
Beyond immediate authentication and identification accura-
cies, we also designed our study to provide insights into a 
variety of peripheral questions relevant to our method. 
Authentication)
To assess authentication accuracy, we ran a simulation con-
sisting of 1000 handprint-events for each of our 20 partici-
pants (i.e., 20,000 rounds). In each round of the simulation, 
we randomly combined 3 (out of 4) sessions of data from 
each participant and used this to train an “authorized” class. 
At the same time, we used 3 randomly selected sessions of 
data from each of the remaining 19 participants for an “un-
authorized” class. We then trained a binary classifier on this 
data. The unused session from each of the twenty partici-
pants was used for testing. Thus, the classifier was trained 
on 2850 negative and 150 positive instances, and tested on 
950 negative and 50 positive instances. 

Overall, our technique achieved twenty-participant authen-
tication accuracies of 99.6% (SD=0.76%). More specifical-
ly, 94.5% of the time, the “authorized” participant was cor-
rectly logged into the system. And 5.5% of the time, the 
system falsely rejected that participant, which would 
prompt the user to “try again” in real world applications. On 
the other hand, an unauthorized user was falsely accepted 
only 0.1% of the time. See Table 1 for the confusion matrix. 
Identification)
To assess identification accuracy, we ran another 1000 
round classification simulation. In each round, we randomly 
combined 3 (out of 4) sessions of data from each participant 
and used this as a training set. Each participant was labeled 
as a separate class (i.e., a twenty-class classifier). The single 
unused session of data from all twenty participants was used 
for testing. We forced our classifier to make a best guess, 
even when it was “not confident”. Overall, our technique 

achieved a mean twenty-participant identification accuracy 
of 94.0% (SD=2.7%); see Table 2.  
Small)Groups)
We also conducted a post hoc experiment simulating family 
units of size four. In each of the 1000 simulation rounds, we 
randomly picked 4 (out of 20) participants to form a “fami-
ly”, and constructed an identification classifier for that 
family. We randomly combined 3 (out of 4) sessions of data 
from each of the four family members and used this for 
training. The unused session of data for each member was 
used for testing the classifier. 
Overall, our technique achieved four-participant identifica-
tion accuracies of 98.2% (SD=3.95%). The histogram in 
Figure 3 shows the family member identification accuracy 
result as percentages of rounds (i.e., simulated families). 
More than 40% of the families achieved 100% accuracy, 
and 90% of families achieved exceeded 95% accuracy. 
Correct)Hand)Placement)
To assess the accuracy of our hand placement classifier, we 
ran 1000 simulation rounds. In each round of the simula-
tion, we chose a stratified sample consisting of 70% of cor-
rect and improper hand placements to use as training data. 
We then trained a binary classifier (i.e., the classifier re-
turned “correct” or “incorrect” hand placement as its out-
put). The remaining (30%) data was used for testing the 
classifier. Overall accuracy was 99.7% (SD=0.15%), 
demonstrating robust rejection of incorrect hand place-
ments, which is an important pre-check before attempting 
authentication or identification. 
Hand)Washing)
In our user study, we asked participants to wash and dry 
their hands in the restroom before the last session. This was 

 
Table 2. Confusion matrix for identification simulations. 

 

Not Authenticated Authenticated !Classified as 

99.9% 0.1% Not Authenticated 

5.5% 94.5% Authenticated 

Table 1. Confusion matrix for authentication simulations. 
 



included to see if altering the moisture of the hands would 
affect classification accuracy. Like our other experiments, 
we randomly combined 3 (out of 4) sessions of data from 
each participant, and used this as a training set. The unused 
sessions were used for testing.  
For authentication, the accuracy for the session after hand 
washing (99.5%, SD=1.06%) had no significant difference 
in accuracy from the other three (pre-wash) sessions 
(99.7%, SD=0.52%). For identification, the accuracy for the 
session after hand washing is slightly worse: 91.7% 
(SD=20.9%) compared to 95.4% (SD=9.38%) for the pre-
wash sessions, though this is not statistically significant.  
Stability)Over)Time)&)Live)Accuracy)
As described previously, to study the robustness of classifi-
cation over time, we invited ten of our participants to return 
after several days (mean gap of 8.0 days). We then evaluat-
ed authentication and identification accuracies “live” 
(trained using the data collected days earlier). 

The new authentication accuracy was 98.0% (SD=2.62%), 
slightly down from 99.6%. However, identification accura-
cy was up: 96.5% (SD=4.70%) vs. 94.0% previously. Nei-
ther result was statically significant, suggesting that Ca-
pAuth may be stable overtime.  
Questionnaire)Data)
We collected various demographic and qualitative infor-
mation, including age, height, weight, and thirstiness to see 
if there was any affect on classification accuracy. We also 
computed a BMI estimate using this data. However, we 
found no significant correlations, though we warn that our 
participant pool is too small to draw any strong conclusions.  
DISCUSSION)AND)CONCLUSION)
Our results indicate that CapAuth is not well suited for 
high-security applications, nor use cases desiring user dif-
ferentiation among large groups of users (e.g., ten or more 
people). However, CapAuth can accurately identify users 
within smaller groups at 98.2% accuracy, such as families, 
suggesting its use as a simple user differentiation mecha-
nism for shared devices where security is not paramount. 
This could be used to e.g., provide parental control on a 
family tablet, or to enable tracking of individual users on a 
shared workspace touch table.  

Similarly, authentication accuracies, even in large groups 
(20 or fewer people), is reasonably high (99.6% and 98.0% 
from our two studies). While acceptable for e.g., family use, 
this result is still not sufficiently secure for security applica-
tions (which typically require accuracies in excess of 

99.9%). However, even in high-security settings, CapAuth 
could prove useful as a two-factor authentication method.  

Finally, one limitation of this technique is its potential sus-
ceptibility to environmental effects. Similar to the difficulty 
of detecting faces under varying illumination conditions, 
our system may not function as well under varying electri-
cal conditions (e.g., grounding to a charger, proximity to 
high-power electrical devices) as these could affect the ca-
pacitive image. Similarly, liquid on the screen (e.g., 
raindrops) and certainly gloves, rings, watches and other 
accessories could affect accuracies.  
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Figure 3. Histogram of family member identification accuracy. 

 


