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Experiments suggest that using head-up displays like Google 
Glass to support parts picking for distribution results in fewer 
errors than current processes. Making Glass opaque instead 
of transparent further improves selection efficiency.

Globally, roughly US$1 trillion in goods are 
distributed from nearly a million warehouse 
sites each year, and for many businesses such 
activity represents 20 percent of their logis-

tics costs.1 Order picking—the process of selecting items 
from inventory racks with pick bins and sorting them 
into order bins for distribution—accounts for about 60 
percent of these warehouses’ total operational costs.2

Current robotic systems lack the dexterity to han-
dle the variety of parts on most pick lines, so the vast 
majority of western European warehouses still use 
manual picking,1 which is costly and time consuming. 
Although manual methods vary, most warehouses still 
use paper lists that include each item’s location, identi-
fying number, and required amount. Such systems are 
error prone and can cause significant losses, as in auto-
mobile manufacturing, where the wrong part can halt 
an assembly line. In e-commerce, inventory errors can 

compromise order fulfillment, possibly increasing cus-
tomer dissatisfaction.

Although technologies like parts-to-picker systems 
that bring parts bins to warehouse workers can facilitate 
various parts of the picking process,1 such systems are 
expensive and relatively rare. Thus, parts bins are typi-
cally stationary, and the picker must rely on a paper list 
or expensive pick-by-light systems that use displays at 
each bin to indicate which parts to pick.3 

Wearable computers are becoming more popular 
with manufacturers as a way to guide pickers, so we con-
structed an environment for two experiments to com-
pare pick errors and speed. The first looked at paper, 
pick-by-light, head-up display (HUD), and cart-mounted 
display (CMD) systems, and the second evaluated a 
transparent versus opaque version of Google Glass. Our 
experiments show that HUDs outperform other technol-
ogies and that the opaque version of Google Glass might 
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be more efficient for order picking 
than the default transparent version.

PICKING METHODS
Picking methods range from the basic 
paper list to task-guidance systems 
that are either worn or embedded in 
the environment. All methods aim to 
help the picker select the correct parts 
from the pick bin and deliver them to 
the correct order bin.

Paper
In the pick-by-paper method, the picker 
refers to a printout of items to be 
selected and their locations—one list 
for each task, which can have multi-
ple orders. The advantages are simplic-
ity and a relatively low implementation 
cost. On the downside, text-only lists 
can be difficult to read or interpret when 
product numbers are long. Often, the 
first optimization done on a pick line is 
shortening product numbers to the last 
three digits (if they are unambiguous).

The list-based picking process 
forces the picker to perform each step 
in two stages: read and interpret the 
list’s fine detail and then move a part 
from one area to another. Often, pick-
ers have the list in one hand while 
reaching for the parts, which limits 
the number of parts they can grasp at 
any one time.2

Light
The pick-by-light method is becom-
ing more prevalent in manufactur-
ing warehouses, even though system 
implementation cost can be as high as 
US$1,200 per meter. Plant managers 
report that the virtual elimination of 
pick errors and the increased picking 
speed are well worth the investment.2

As Figure 1 shows, with pick-by-
light, warehouse bins often have small 
displays and push buttons. When a 

picker traverses the aisles, the displays 
illuminate on the pick bins, typically 
showing the quantity to be picked. 
Most pick-by-light systems require 
that pickers press a button to indicate 
they have picked from the correct bin. 
In more sophisticated systems, sen-
sors try to detect the picker’s reach into 
each bin. In such systems, the display 
on a pick bin goes out after each pick is 
confirmed, and another light illumi-
nates the order bin where the picked 
parts are to be placed. Pickers tend to 
dislike the buttons and sensors on pick 
bins because the sensors do not always 
correctly detect the reach, which 
requires more button pushes to fix.

Proximity or weight sensors, or a 
button press by the picker, indicate 
when an item is placed in the order 
bins. Sensor activation or the button 
press triggers the display of the next 
task’s picks. Although they dislike 
sensors on pick bins, pickers generally 
find the order bin sensors valuable. 

Cart-mounted display
Pick-by-CMD displays a graphical rep-
resentation of the picks on the order 

cart. In some cases, warehouses use 
a high-resolution LCD display to dis-
play picks for an entire shelving unit 
instead of the pick-by-light systems 
that indicate each pick bin. Instru-
menting the order cart seems more 
effective and less expensive than 
instrumenting each shelving unit, but 
we have seen few such installations.

Head-up display
In this system, the picker wears a HUD 
that shows the pick charts needed 
for each shelving unit. Similar to 
the pick-by-light method, when the 
picker drops items into the order bin, 
the HUD displays the next pick chart. 
Figure 2 shows various technologies 
suitable for a HUD-based picking sys-
tem, including an opaque version of 
Google Glass. Glass is lightweight and 
self-contained, requires no additional 
computer, and has sufficient process-
ing power and network connectivity to 
run order-picking software.

Other methods
Commercial pick-by-voice systems use 
wearable computers to guide pickers 

(c)

(a) (b)

FIGURE 1. Pick-by-light method. (a) The pick bin displays the number of parts to pick (1), 
while (b) the order bin shows where to place (P) the order. (c) Typically, the order bins are 
mounted on a wheeled order cart so that the pickers can transport the order bins as they 
walk through the stacks of pick bins in the warehouse. 
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through their tasks using spoken 
audio prompts and simple speech rec-
ognition. In previous experiments, 
these systems eliminated many errors 
but were significantly slower than all 
other systems, including the standard 
pick list.4,5 Similarly, some commer-
cial systems require pickers to confirm 
each pick by using a handheld scan-
ner to scan a barcode on each pick bin. 
These systems also eliminate many 
errors but seem even slower than 
paper or voice. 

Pick-by-vision6 uses a HUD and 
motion tracker to overlay 3D graphic 
tunnels onto the picker’s visual field. 
The tunnels then guide the picker to 
the right position in the warehouse and 
highlight the correct pick and order 
bins with a surrounding frame. Aug-
mented reality systems that use such 
registered graphics have not yet shown 
a significant improvement in either 
accuracy or speed over a paper pick list.

Recent experiments in Germany 
introduced a pick-by-projector method 

which guides pickers using video pro-
jectors that illuminate pick and order 
bins. One implementation5 uses Micro-
soft Kinect sensors to sense the picker’s 
motions and provide feedback. Prelim-
inary results are promising relative to 
paper-, voice-, and vision-based picking 
methods and might eventually prove a 
viable, albeit more expensive, alterna-
tive to the pick-by-HUD system.

EXPERIMENTAL 
ENVIRONMENT
To evaluate order-picking technolo-
gies, we built a dense-picking environ-
ment in our research laboratory that 
uses intelligent storage locations and 
order batching.2 Figure 3 shows our 
experimental environment. Figure 
4 shows how the paper- and display- 
based prompts correspond to the 
shelves and bins. 

Our warehouse environment con-
sisted of 24 pick bins divided between 
two shelving units, A and B. Each 
shelving unit has four rows and three 

columns, and each pick bin contains 
20 to 40 items. The order cart, shown 
in Figure 3b, has three order bins 
coded with a square, cross, or trian-
gle. The cart’s top row holds the paper 
tasks or the CMD. 

We used our environment to con-
duct two experiments: the first com-
pared the paper, light, HUD, and CMD 
methods, and the second compared 
a pick-by-HUD system using trans-
parent and opaque versions of Google 
Glass. In these experiments, unlike 
our earlier work,2,4 we increased task 
variety, attempting to induce more 
performance errors for comparison 
purposes.

We define key terms in our experi-
ments as

 › pick—one reach into a pick bin 
and the removal of one or more 
parts; 

 › place—putting all items cur-
rently being carried into an 
order bin;

(c)

(a) (b)

(d)

FIGURE 2. Displays used in pick-by-head-up display (HUD) systems. (a) MicroOptical SV-3 HUD mounted on safety goggles. (b) View 
through the SV-3, (c) view through Google Glass with a transparent display (default), and (d) view through an opaque display. 
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 › task—a collection of up to six 
subtasks; and

 › subtask—moving one to seven 
items from one shelving unit to 
one order bin. 

A task consists of up to six sub-
tasks corresponding to three orders: 
three sets of picks from shelving unit 
A, placed into three order bins respec-
tively, followed by a set of three sets 
of picks from shelving unit B, also 
placed into the three respective order 
bins. For each subtask, we randomly 
assigned one to seven items to be 
picked from one to five pick bins on 
shelving unit A or B. These items are 
placed in a single order bin (1, 2, or 3). 
For example, in Figure 3a, the subtask 
involves shelving unit A, and 4 of the 
12 possible pick bins are involved. The 
five picked parts are placed into order 
bin 1 (Figure 3b). Figure 3c shows the 
layout of the experimental venue.

For our testing, we have simplified 
the pick list and attempted to make 
it as efficient as possible. Figure 4a 
shows a sample. For the first subtask in 
the sample list, the participant would 
pick one item from row 1, column 3; 
one item from row 2, column 2; two 

items from row 3, column 3; and one 
item from row 4, column 2. The partic-
ipant would place the five items into 
order bin 1. 

Figure 4b shows a pick chart, a 
graphical representation of the pick 
list. We use these pick charts for 
our pick-by-HUD and pick-by-CMD 
methods. Each pick chart shows the 
arrangement of the items to be picked 
for each order bin from each shelv-
ing unit. The colors on the pick chart 
correspond to the colors of the shelf 
rows shown in Figure 3a. Each row 
has three bins, and each bin bears a 
square, cross, or triangle. The pick 
chart uses these symbols to help cue 
the picker. In previous research, we 
showed that such color coding and 
symbol cues improve pick accuracy.2 
Adjacent colors are arranged so as to 
be unambiguous to color-blind pick-
ers. Pick charts are significantly more 
efficient and accurate than pick lists, 
even when used in paper form, as in 
Figure 4c.4 

EXPERIMENT 1: COMPARING 
FOUR METHODS
In our first experiment, conducted in 
late 2013 to evaluate the paper, light, 

HUD, and CMD picking methods, we 
enlisted eight participants, ages 22 to 
27. All the participants—five males 
and three females—were novices 
in order picking. Four were left-eye 
dominant. 

We paid each participant US$20, 
and the study lasted approximately 
two hours. The participants were 
instructed to complete the tasks as 
quickly and accurately as possible. In 
both phases, we used a Latin square to 
counterbalance the order in which the 
participants performed each picking 
method. 

For pick-by-light, CMD, and HUD 
systems, a participant could see 
instructions for only one subtask at a 
time. After the participant completed 
each subtask, an experimenter acti-
vated the next subtask, emulating the 
automatic process enabled by a weight 
or proximity sensor in the order bin. 
When a participant completed a task, 
the experimenter replaced the full 
order bins with empty ones and pro-
ceeded to assign the next task. For pick-
by-light, we decided not to require the 
button-push confirmation for picks, 
since the pickers we interviewed did 
not like this requirement. 

(a) (b) (c)

FIGURE 3. Experimental dense-picking environment. (a) The environment consists of 24 pick bins arranged on two shelving units in 
four rows and three columns per unit. (b) It also contains an order cart with three order bins and a cart-mounted display (CMD) on the 
top left shelf, which shows a graphical pick chart corresponding to the colored labels in (a). (c) A room diagram shows two video cameras 
(bottom and top left) to capture the picker’s actions, a still camera (bottom right) to capture the picked parts in the order bins for later 
error analysis, the picker (green figure), and two experimenters (black figures).
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For pick-by-CMD, we used an LCD-
based laptop mounted on the order 
cart to display the pick chart so that 
the picker could refer to it with a 
simple turning of the head while 
picking. Our pick-by-CMD method 
was developed based on testing with 
order pickers at a major automobile 
manufacturer.2

For the HUD system, we used a 
MicroOptical SV-3 opaque HUD to dis-
play pick charts. The display was teth-
ered to a laptop worn in a backpack 
(Figure 2a) Because Google Glass had 
not been released at that time, the SV-3 

display served as a good proxy, as it has 
a similar field of view, head weight, 
and resolution. 

For each of the four picking meth-
ods, participants performed five prac-
tice tasks as part of their training 
session. Afterward, participants per-
formed 10 test tasks such that each 
experiment had a total of 20 practice 
and 40 test tasks.

After using each picking method, 
participants completed a NASA-TLX 
(Task Load Index)7 survey. At the end 
of the testing phase, they ranked the 
four methods according to overall 

preference, ease of learning, comfort, 
speed, and accuracy.

Errors
To avoid learning-curve effects,2 our 
study considered only the last eight tasks 
from each testing session. We hypoth-
esized that the pick-by-HUD method 
would have a lower average error per 
pick and less average task time than 
the other three approaches. Our experi-
ments were within-subject, and we used 
one-tailed, paired-sample t-tests, with a 
significance level of α = 0.05.

Picks could have one of three types 
of errors: item mistakes, wrong number, 
and wrong order bin. Item mistakes had 
three subcategories: 

 › substitution error—when one 
part was swapped for another—
which could be wrong row, col-
umn, or shelving unit;

 › missing-part error—when the 
participant omitted a part; and

 › additional-part error—when the 
participant placed an un requested 
part in an order bin. 

Wrong number errors have two subcat-
egories—too many or too few—occur-
ring when the participant selected too 
many or too few of the correct parts. 
Wrong order-bin errors occurred when 
the participant placed the items into 
the incorrect order bin. Errors of the 
types too many and additional part are 
not severe enough to stop an assem-
bly line and might be discounted or 
ignored depending on the order pick-
ing domain.

Results
Figure 5a shows the methods’ average 
task times. The HUD method’s aver-
age task time was significantly shorter 
than using pick-by-light (p = 0.002) 

(a)

(b)

(c)

FIGURE 4. Task representations. (a) Sample paper pick list for task 001, subtask 1, on 
shelving unit A; (b) a graphical pick chart for the same task for the pick-by-CMD and pick-
by-HUD methods (overlaid on the pick shelves in Figure 3a); and (c) a paper rendering of 
the graphical pick chart used in previous experiments.
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and paper (p = 0.0001). Figure 5b shows 
the average error per pick. We counted 
one error for each error subcategory 
and used the total number of errors to 
calculate the method’s average error 
per pick. Using the MicroOptical SV-3 
HUD resulted in significantly fewer 
errors than pick-by-light (p = 0.007) 
and paper (p = 0.018).8 Figure 5c shows 
the errors for all four methods divided 
by specific error type.

The results supported our hypoth-
esis: the pick-by-HUD method had 
fewer errors and a shorter task time 
than either paper or light. Participants 
also rated the method more favorably, 
stating that it was much less work. The 
paper method’s poor speed might stem 
from the need to use one hand to hold 
the list, and the many errors might be 
the result of the need to parse the text 
and remember it while scanning the 
shelves for the right bin.

HUD method. Our test results show 
that using pick-by-HUD can virtually 
eliminate errors and improve speed 
by approximately 30 percent over 
paper lists (Figure 5).8 In addition, 
the average pick time with the HUD 
method is a statistically significant 
speed improvement over pick-by-light. 
The pick errors with pick-by-HUD, 

which were fewer than with any other 
method, also tend to be less severe. 
Study participants preferred pick-by-
HUD over all other methods tested, 
and the method had the lowest work-
load as measured by the NASA TLX.

These results are surprisingly 
strong. Pick-by-HUD costs consider-
ably less to implement than pick-by-
light, making it a promising new tool 
for order picking. Products such as 
Ubimax’s XPick (www.xpick.de) are 
bringing the technology to manufac-
turing environments, but much opti-
mization work remains. 

Light method. To our surprise, the pick-
by-light method was slower and more 
error prone than pick-by-HUD. During 
testing, we saw that pickers were too 
close to the shelving units to see which 
other bins were lit, causing them to 
skip picks and not plan their motions 
as effectively as they could with a HUD, 
which offers a task overview.

The low performance is more 
understandable when considering the 
participants’ view. Pick-by-light users 
often scan the shelving unit visually 
from top left to bottom right, which 
takes time. They also tend to step back 
frequently to see the entire shelving 
unit because they cannot keep the 

complete context in their heads. Even 
so, they tend to skip pick bins by acci-
dent, as evidenced by the large num-
ber of missing part errors in Figure 5c; 
bins on the shelving unit’s periphery 
were particularly troublesome. With-
out making the picker press a button to 
confirm a pick, errors were worse than 
with a paper list. However, adding a 
button-push to each pick will slow the 
process even more.

CMD method. The high performance 
of the pick-by-CMD method was also a 
surprise. Speed, accuracy, workload, 
and preference results approach those 
of the pick-by-HUD method. However, 
the errors in the pick-by-CMD method 
are more critical. As Figure 5c shows, 
pickers picked from the wrong bin as 
opposed to not picking the right num-
ber of a given part (HUD method).

Perhaps the difference is proce-
dural: pickers turn their heads often 
between the CMD and the pick bins. 
A picker who is focused on the cart’s 
display might use peripheral vision to 
pick and place, resulting in more errors 
and workload. Regardless of the dif-
ferences, our results suggest that both 
pick-by-HUD and pick-by-CMD meth-
ods are promising replacements for 
light and paper methods. Both seem 
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to reduce errors significantly, have 
lower setup costs than the pick-by-light 
method, and provide more flexibility.

EXPERIMENT 2: COMPARING 
HUD SYSTEMS
In our first experiment, our pick-by-
HUD method used MicroOptical’s SV-3 
display, which performed well but 
required a tether to a backpack com-
puter. The backpack is both incon-
venient and uncomfortably hot.2 For 
the second study (transparent versus 
opaque HUD), we used a self-contained 
Google Glass device without the back-
pack or tether, both alone and with 
a piece of electrical tape added to the 
Glass display to make it opaque.

Our second experiment used the 
same environment and most of the 
same procedure. The goal was to eval-
uate transparent Glass against an 
opaque version. 

Transparent versus opaque
Our experiment has some similarity 
to Robert Laramee and Colin Ware’s 
laboratory study evaluating the effects 

of transparent and opaque HUDs on a 
participant’s ability to perform a table 
lookup task on a fixed screen.9 Partic-
ipants were stationary, and the task 
was designed for visual searching, 
which should be particularly sensi-
tive to the visual interference possible 
with a transparent HUD. Indeed, their 

participants performed significantly 
better using the opaque screen.9 

We wondered how much visual 
interference a transparent HUD might 
cause in order picking, because the 
user is glancing at the display but is 
focused more on the environment. We 
hypothesized that using an opaque 
display would result in lower average 
errors per pick and less average task 
time than a transparent display.

Procedure
We repeated the same testing proce-
dure as in Experiment 1 except that we 
added 12 participants, 5 females and 
7 males. All were ages 21 to 35, new to 
our studies, and novices at order pick-
ing. No one wore regular eyeglasses 
during the study, since glasses do not 
fit well with the Glass version we use. 
All participants who needed vision 
correction wore contact lenses. 

For each of the two picking meth-
ods, the participants completed 5 
training tasks and then proceeded to 
10 test tasks. We again used a Latin 
square to counterbalance the order of 

the picking method chosen. In both 
the transparent and opaque versions, 
participants saw the same graphical 
chart (Figures 2c and 2d). To make 
Glass opaque, we covered the back of 
the display with black tape. 

As in Experiment 1, we used only 
the last eight tasks from each testing 

session, randomizing task order for 
both sessions. We could then con-
duct a within-subject, paired-sample 
comparison between the methods 
for each task, which should be more 
sensitive than comparing average 
task performance. We accidentally 
skipped one task for one participant, 
which resulted in 95 (12 participants × 
8 tasks – 1) task pairs for testing. This 
number was enough to estimate p val-
ues through Monte Carlo permutation 
methods (295 combinations). Specifi-
cally, for each task pair we randomly 
selected one result for class A, the 
other for class B, and subtracted B from 
A. From these 95 differences, we cal-
culated the average. We repeated this 
calculation process a million times to 
obtain a distribution of these averages, 
which should center on zero. 

We calculated the actual experi-
mental difference in average task times 
between the transparent and opaque 
conditions. Because our hypothesis 
was that the opaque display would out-
perform the transparent one, we deter-
mined the estimated p value by the per-
centage of the million trials that shows 
a difference greater than the experi-
mental difference. We set the signifi-
cance level at α = 0.05 (meaning that 
only 5 percent of the random groupings 
show a greater difference). Out of curi-
osity, we also ran a standard one-tailed, 
paired t test on the data; the resulting p 
values were very similar.

Discussion
As Figure 6a shows, the average task 
time using the opaque display is less 
than when using the transparent one. 
The difference passes the significance 
test (p = 0.0416, 99 percent confidence 
interval [0.0410, 0.0421]). As shown in 
Figure 6b, the average error per pick 
for the two methods is close. Figure 6c 

THROUGH REPEATED TESTING WITH 
ORDER PICKING, HUD OPTICAL 

PROPERTIES  MIGHT BE OPTIMIZED  
FOR SIMILAR INDUSTRIAL TASKS.
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shows the errors divided into specific 
error types.

Although we were correct in our 
hypothesis that the opaque HUD 
results in faster picking than the 
transparent display, the difference is 
less than 3 percent—much lower than 
observed in Laramee and Ware’s study 
with a stationary user.9 Perhaps the 
difference is procedural; order pick-
ing alternates rapidly between virtual 
and physical worlds, while Laramee’s 
stationary user dealt mostly with the 
virtual realm, which would maximize 
any effect from visual interference 
with the physical world.

A deeper investigation into the data 
shows a clear learning effect, which 
surprised us until we realized that we 
had given participants only 10 practice 
tasks instead of the 20 practice tasks 
for participants in the first experiment. 
This oversight might also explain the 
higher error rate: 2 percent with Glass 
overall relative to 0.6 percent with SV-3.

Our experimental design seems 
to have sufficient sensitivity 
to help select among picking 

system variations, enabling several 
lines for continuing work. Our picking 
environment is closely modeled after 
those we observed in the automobile 

industry, but our results should gener-
alize to similar environments. Indeed, 
DHL (a major shipping firm), Ricoh, 
and Ubimax have recently seen a 25 
percent improvement in picking per-
formance with smart glasses. How-
ever, for pick environments that differ 
significantly from the one we tested, 
we could easily modify the experimen-
tal environment and retest.

Order picking might prove to be 
a good reference task for optimizing 
HUD characteristics for industrial 
environments, given that it requires 
constant movement, interaction 
with the physical world, and quick 
glances to a pick list or chart. Through 
repeated testing with order picking, 
the optical properties of HUDs (for 
example, brightness, contrast, field of 
view, color depth, focus, eye box, and 
bi-ocular versus monocular presen-
tation) might be optimized for simi-
lar industrial tasks. A comparison of 
Glass and the SV-3 is a case in point. 
Although the two have a similar field 
of view, Glass is centered above the 
user’s field of vision on the right eye, 
while the SV-3 is adjustable, and the 
view is slightly below the partici-
pant’s line of sight. The SV-3 also has 
an adjustable focus and is often worn 
on the dominant eye, left or right. Is 
the higher error rate observed with 

Glass versus the SV-3 because of place-
ment as opposed to the learning effect 
we hypothesized? A relatively quick 
study could determine the truth. Glass 
is becoming a popular experimental 
platform in industry, making it a logi-
cal choice for continued testing.

Safety is another important con-
cern. Perhaps a HUD-based picking 
interface could in fact be safer than 
current paper lists because the HUD 
keeps pickers’ hands free and is less 
distracting. If so, comparing the use 
of new HUD models to standard paper-
based pick lists might provide a mea-
sure of safety assurance—much as 
tests in the automotive industry evalu-
ate the safety of new dashboard inter-
faces by comparing the degree of dis-
traction between using the interface 
and changing a radio channel.

The poor performance of the pick-
by-light method also suggests an area 
for further study. How will includ-
ing pick-confirming sensors or a but-
ton push affect accuracy and speed 
relative to the pick-by-HUD method? 
Adding scales under each order bin 
could reduce errors for all methods but 
might be particularly effective against 
missing parts or picking too few parts 
of a given type. If including both sen-
sors and scales could virtually elim-
inate these errors, will pick-by-HUD 
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still be faster than pick-by-light and, 
if so, by how much? Answering these 
questions is just one of many direc-
tions for future research and could 
move industry more quickly toward 
assistance in performing a tedious and 
error-prone process. 
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