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Abstract

We introduce the first visual privacy dataset originating
from people who are blind in order to better understand
their privacy disclosures and to encourage the development
of algorithms that can assist in preventing their unintended
disclosures. It includes 8,862 regions showing private con-
tent across 5,537 images taken by blind people. Of these,
1,403 are paired with questions and 62% of those directly
ask about the private content. Experiments demonstrate the
utility of this data for predicting whether an image shows
private information and whether a question asks about the
private content in an image. The dataset is publicly-shared
at http://vizwiz.org/data/.

1. Introduction
Mobile devices with built-in cameras have become ubiq-

uitous. However, for people who are blind, using these de-
vices to take and share pictures bares a grave risk of broad-
casting private information [10, 12, 17, 44]. This is be-
cause blind people1 by definition cannot see what is around
them, and so cannot know what is in the field of view
of their cameras. Still, many blind people share pictures
they take in order to gain a transformative new ability to
receive assistance in learning about their visual surround-
ings [7, 14, 15, 16, 18, 28, 31, 45, 55]. Some blind people
also share their pictures on social media to socialize and ex-
press their creativity [8, 10, 26, 44]. And potentially many
more of the 285 million people worldwide with visual im-
pairments [38] would take and share pictures if given assur-
ance that they could avoid privacy leaks [11]. Protecting pri-
vate information is necessary to avoid the potential adverse
social, professional, financial, and personal consequences to
photographers (and bystanders) inflicted by privacy leaks.

While a natural step towards empowering blind peo-
ple to protect private visual information is for the com-

1Currently, there is an international discussion on whether to use the
phrase “blind person” versus “person who is blind” [1]. At present, both
are accepted. For example, in the United States “person who is blind” is
often preferred while in the United Kingdom “blind person” is preferred.

puter vision community to design algorithms to assist, a
key obstacle is that none of the existing visual privacy
datasets [21, 37, 36, 41, 52] needed to train algorithms are
goal-oriented towards the images taken by and interests of
people who are blind. Yet, our analysis shows that privacy
leaks from this population are common; i.e., over 10% of
more than 40,000 of their images contain private visual in-
formation. Moreover, our analysis suggests that over 50%
of privacy leaks arise because people are explicitly com-
promising their privacy in exchange for assistance to learn
about private visual information that is inaccessible to them
(e.g., reading the number on a new credit card).

Our aim is to encourage the development of algorithms
that can empower blind photographers to avoid inadver-
tently sharing private visual information. We begin by in-
troducing the first visual privacy dataset originating from
this population. The images were taken and shared by blind
users of a visual question answering service [14]. For each
image, we manually annotate private regions according to a
taxonomy that represents privacy concerns relevant to their
images, as summarized in Figure 1 (e.g., reading the results
to a pregnancy test). We also annotate whether the private
visual information is needed to answer the question asked
by the user. These annotations serve as a critical foundation
for designing algorithms that can decide (1) whether pri-
vate information is in an image and (2) whether a question
about an image asks about the private content in the im-
age (a novel problem posed by our work). We benchmark
numerous algorithms for both purposes. Our findings offer
encouraging results that it is possible to automatically make
both types of predictions while also demonstrating that the
datasets are challenging for modern vision algorithms.

More generally, our work offers a new dataset challenge
for training algorithms using large-scale, corrupted datasets.
That is because the solution we propose for creating a large-
scale, publicly-available visual privacy dataset is to remove
private regions while preserving the context. Our empiri-
cal analysis of obfuscating the private content through var-
ious inpainting methods highlights (in)effective strategies
for training algorithms using corrupted datasets.
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Figure 1. Examples of the types of private visual information found in images taken by blind people. Included are images that show common
private objects (green box) as well as objects that commonly show private text (blue box). All private content is masked out (regions outlined
in red) and replaced with automatically-generated fake content in order to safeguard the private information while preserving the context.

2. Related Work

Assistive Blind Photography. An increasing number of
automated solutions are emerging that can assist blind
people to take pictures. For example, many tools auto-
matically guide users to improve the image focus, light-
ing, or composition in order to take a high quality pic-
ture [9, 15, 24, 26, 43, 54]. Other tools automatically no-
tify users about what content is present (e.g., objects, text,
generic descriptions) [6, 46], a valuable precursor for en-
abling users to decide if they are satisfied or should take
another picture. While prior work demonstrates exciting
progress, it does not yet explore the important problem of
assisting users to protect private content. Yet, blind people
have expressed concerns about inadvertently disclosing pri-
vate information to the wrong people [10, 12, 17, 44] and
the possible repercussions from privacy leaks are grave—
e.g., identity theft, embarrassment, blackmail, legal liabil-
ity. Accordingly, we introduce the first dataset challenge to
encourage the development of algorithms that can alert this
population when their pictures contain private information.

Visual Privacy Datasets. Large-scale datasets are often
shared publicly to encourage the development of algorithms
that automatically analyze visual information [19, 33, 39,

47]. Unfortunately, creating a large-scale collection of “pri-
vate” images is inherently challenging since the very nature
of such images means they are rarely shared. Still, sev-
eral teams have successfully curated and shared private im-
ages that individuals posted for public viewing on photo-
sharing websites (i.e., Flickr, Twitter) [36, 37, 52]. We,
in contrast, curate images from people who agreed to the
terms of the VizWiz mobile application that “Photos... may
be... released as data sets... [after] personally-identifying
information (photos, questions, etc) will be removed.” As
a result, we cannot release the private images as is. Other
teams who faced a similar constraint addressed it by either
(1) constraining data collection to consenting individuals
(some who participated in staged private situations) [21, 41]
or (2) releasing features describing private images (risking
that future work may show how to recover the original con-
tent) [41]. We instead remove private regions and preserve
their context in order to develop a large-scale visual privacy
dataset that originates from a natural setting. This is the first
visual privacy dataset originating from blind photographers
and poses a new challenge of training algorithms to recog-
nize private information using only its context. Experiments
show the benefit of this dataset for training algorithms.



Visual Question Answering. Many large-scale visual
question answering (VQA) datasets have been proposed to
catalyze research on the VQA problem; e.g., [13, 22, 25,
27, 29, 34, 51]. However, no existing datasets include ques-
tions about private visual content. Yet, many people who are
blind opt to ask questions about private visual content that
is inaccessible to them; e.g., sharing a picture showing their
prescription pills to learn what type of pills is in the bot-
tle may be a lesser evil than accidentally taking the wrong
pills. Accordingly, we pose a novel problem of predicting
whether a question asks about private visual content, a crit-
ical precursor to deciding if the private content needs to be
shared in order for a visual assistant to answer the question.
Taxonomy of Private Visual Information. A key chal-
lenge in designing a privacy dataset is establishing what is
private in images. While legal and government entities of-
fer laws and policies instructing how to protect privacy at
large [20, 30, 35, 40, 42], their guidance leaves room for in-
terpretation for images. Thus, researchers have proposed
taxonomies based on people’s stated privacy preferences
both for images they take and images they see on social im-
age sharing websites [32, 36, 37, 41, 52]. We propose the
first taxonomy motivated by this population’s images and
report how often each privacy type arises in practice.

3. VizWiz-Priv Dataset
We now introduce “VizWiz-Priv” which consists of im-

ages taken by people who are blind. It builds off prior
work that introduced a mobile phone application for en-
abling users to take pictures, ask questions about them, and
have remote humans provide answers [14]. We created the
dataset using 13,626 images taken by users who agreed to
have their data shared anonymously. Note that this is a dis-
tinct set of images from the 31,173 that already are publicly
available as part of the VizWiz-VQA dataset [25]. These
image were excluded from VizWiz-VQA because they ei-
ther lacked questions (and so are irrelevant for VQA) or
were flagged by prior work [25] as containing private infor-
mation and so unsuitable for public consumption. In what
follows, we describe how we annotated private visual con-
tent, created the dataset, and then analyzed both.

3.1. Annotation of Private Visual Content

Privacy Taxonomy and Annotation Tool. We began by
developing a taxonomy of visual privacy issues as well as
an annotation tool for localizing private content. Initially,
we designed a prototype for this purpose. Then, three
trusted individuals who contributed to the design of the
prototype independently used it to annotate private content
in 120 randomly-selected images, and subsequently refined
the taxonomy to resolve their annotation differences as well
as the design of the tool to improve its usability.

Our final privacy taxonomy was designed to reflect the

types of image content that introduce risks to people who
are blind. Accordingly, the candidate categories came from
existing taxonomies [21, 25, 37, 49] and was refined to re-
flect those detected in the 120 annotated images, including
extra categories that reflect how people who are blind sub-
ject themselves to risk (e.g. sharing medical information
on pill bottles) as well as potential stigmas. This resulted
in a two-level taxonomy hierarchy. We chose as the top-
level categories “objects” and “text” since those were most
frequently observed. Object categories, in turn, consist of
tattoos, pregnancy test results, and faces (represented di-
rectly as well as in framed pictures or reflected off shiny sur-
faces since these two related categories were also frequently
observed). Private text categories consist of 14 objects on
which private text is commonly located and are listed in Fig-
ure 1; e.g., prescription pills show people’s names; letters
show addresses; and credit cards provide access to people’s
money. Also included are two categories for both objects
and text to reflect “suspicious” content for which it is hard
to decipher if private information is present (e.g., in poor
quality images or complex scenes) as well as an “other” cat-
egory to capture private content not in our taxonomy.

The final annotation tool supported a user to locate image
regions showing private content and assign a privacy cate-
gory to each region. Specifically, a user traces the boundary
of private information (text or object) by clicking on the im-
age with a series of points that are connected with straight
lines and clicking on the first point to complete the region.
Once finished, the person selects the first-level and second-
level privacy categories. A user repeats this two-step pro-
cess for all private regions in an image before moving to the
next image. For regions densely populated with more than
five of the same private object (e.g., crowd of people), users
were instructed to annotate it as one region. For images
lacking private information, a user could select a button to
mark the image safe for public consumption as is.

Annotation Collection. We implemented a multi-level
review process. First, an in-house annotator annotated the
privacy information in all images. Then, two domain ex-
perts who helped define the taxonomy and annotation tool
reviewed each annotated image to correct any mistakes, in-
cluding updating assigned privacy categories and improv-
ing/adding polygons. For the latter, a person could adjust a
polygon’s vertices by dragging and dropping them.

To assess the reliability of the annotation process, we
measured the annotation agreement between the two do-
main experts who reviewed all annotations. They each in-
dependently annotated 250 randomly-selected images. We
found that they agreed on whether private information is
present for 90% of images, agreeing 115 images do not con-
tain private information and 109 images contain private in-
formation. This finding suggests that the annotators largely
shared a common understanding for what is private.



Figure 2. Frequency of disclosures for different privacy types with respect to number of images and number of private regions annotated.
Results are shown on a logarithmic scale to illustrate the frequency of both common and rare causes of privacy disclosures.

Private Objects Private Text

Type: All Face Reflect Photo PregTest All MisPaper ComScreen Mail Other

Area 159,881 166,169 80,185 99,289 53,134 99,259 82,066 77,507 68,516 88,977
Region Area
Image Area 0.11 0.11 0.05 0.07 0.03 0.06 0.05 0.05 0.05 0.04
Shape 0.82 0.85 0.81 0.75 0.67 0.55 0.54 0.56 0.57 0.54

Table 1. Mean value of properties describing private regions for different types of private information.

Analysis of Private Information. Using the annotated
images, we then tallied how often each privacy type oc-
curred across all images and private regions. Figure 2 shows
the results, broken down with respect to the first-level cate-
gories (“object”, “text”) and 23 second-level categories.

Overall, 5,537 of the images were tagged as containing
private information. When considering the larger collec-
tion of images taken with the VizWiz mobile phone appli-
cation [14] (i.e., 13,626 + 31,173 [25] = 44,799), this means
roughly 12% of all pictures taken by blind people show pri-
vate content. This finding reveals that safeguarding private
information is an important practical problem. We argue
this problem is especially concerning since many visual as-
sistance services still rely on humans [2, 3, 4, 7, 14, 23, 48].

A total of 8,862 private regions were identified across
all private images. Slightly more of these regions were
tagged as showing private text (i.e., 58%) than of private
objects (i.e., 42%). Among the 5,151 text disclosures, they
most commonly were found on miscellaneous papers (i.e.,
30%) followed by computer screens (13%), letters (12%),
and other objects (12%). Among the 3,711 object disclo-
sures, the most common were faces (76%) followed by
framed photographs (15%), face reflections (3%), and preg-
nancy test results (2%) respectively. These findings illus-
trate VizWiz-Priv offers a domain shift from the most simi-
lar privacy dataset [36]; [36], in contrast, covers only two of
these eight most common categories: faces and letters/mail.

We also tallied across all 5,537 private images how many
private regions and privacy types are in each image. Most
commonly, one private region is detected per image (i.e.,
67% of images), followed by two (i.e., 19% of images),
three (i.e., 8%), and four or more (i.e., 6% of images). This

finding directly influences our findings for the number of
privacy categories per image with most commonly one type
per image (i.e., 93%), followed by two (i.e., 6%), and at
most three (i.e., <1%). This latter finding contrasts prior
work which reported an average of 5.2 types per image for
the VISPR dataset [37]. VizWiz-Priv averages 1.6 types per
image. We hypothesize this discrepancy arises as a result of
differences in the complexity of images, with VISPR more
commonly biased towards complex scenes and VizWiz-Priv
biased towards single object images.

We next characterized the appearance of private regions
for different privacy categories. For each region, we com-
puted its (1) area (i.e., absolute number of pixels in the re-
gion), (2) relative size (i.e., fraction of pixels in the image
that belong to the region), and (3) circularity (i.e., ratio of
its area A to a circle with the same perimeter P ( 4πAP 2 )). Ta-
ble 1 shows the resulting mean values with respect to the
top-level categories (“object”, “text”) and their most com-
mon second-level categories. We observe that private ob-
jects tend to be more circular than private text (i.e., 0.82
versus 0.55), possibly capturing the oval shape common
for faces versus rectangular shape common for text. Also
shown is that a region’s relative size is almost two times
larger for private objects (i.e., 11% of image) than private
text (i.e., 6% of image). Moreover, text categories tend to
be consistent in their relative size (i.e., 4% to 5%) compared
to object categories (i.e., 3% to 11%); e.g., pregnancy tests
occupy on average 3% of the image (with ∼53,134 pixels)
whereas faces occupy on average 11% (with ∼166,169 pix-
els). These findings reveal different types of private content
exhibit different visual biases, a valuable precursor for algo-
rithms learning to recognize and distinguish between them.



Dataset Image Source # Images Annotation Taxonomy Public Content

Campus Face Set [21] Moving Vehicle 2,176 Rectangle Faces Images (of Staged Actors)
PicAlert [52] Flickr 4,701 Image Label Public/Private Images
YourAlert [41] Social Network 1,511 Image Label Public/Private Image Features
VISPR [37] Flickr, Twitter ∼12,000 Image Label 68 Categories Images
Redactions [36] Flickr, Twitter 8,473 Polygons + Labels 24 Categories Images + Masks + Labels
Ours: VizWiz-Priv Blind People 5,537 Polygons + Labels 23 Categories Masked Images + Labels

Table 2. Comparison of five image privacy datasets and our VizWiz-Priv dataset. (Note: “# Images” indicates the number of private images)

3.2. Dataset Creation

Since the privacy concerns we are addressing prohibit us
from releasing publicly the private content in images, we
opted to release only the context around it. Thus, a primary
goal in designing the dataset was to minimize the possibility
that algorithms will learn to detect artifacts around removed
regions as predictive about private content. In what follows,
we describe how we created VizWiz-Priv with this aim in
mind as well as our analysis of the dataset.

Removing Regions from Private & Non-Private Images.
Our aim is to ensure private and non-private images share
similar artifacts. Thus, in addition to masking out the pri-
vate regions from all 5,537 private images, we randomly
applied those same private regions to the remaining 8,093
non-private images to determine what content to remove.
Doing so ensures the same shape and location statistics of
the removed regions are applied to both the private and non-
private images. While this approach does have a shortcom-
ing that the masked out regions in the non-private images
may not cover meaningful objects or chunks of text, it will
be shown in Section 5 that an algorithm can still learn cues
that are predictive of private information.

Inpainting to Replace Removed Regions. Next, we syn-
thesized content to fill in regions removed from all im-
ages in attempt to make them look more realistic for algo-
rithm training as well as for human review in the publicly-
released dataset. We employed the publicly-available code
for the state-of-the-art image inpainting system [50]. This
approach explicitly utilizes surrounding image context to
decide how to synthesize novel image structures in a re-
moved region. We also created another version where we
replace all hole pixels with the mean value from ImageNet.

Dataset Comparison. Table 2 illustrates how VizWiz-
Priv compares to existing privacy datasets.

One key distinction of VizWiz-Priv is the method for
publicly-releasing the data, which stems from the use case
which led to the collection of the images. While most teams
could release images as is, since images came from individ-
uals who already posted them for public viewing [36, 37,
52], two teams shared our constraint that no private content
could be released. These teams addressed this constraint by

either employing “actors” who consented to participate in a
similar staged private situation [21] or releasing features de-
scribing private images (risking that future work may show
how to recover the original content) [41]. We instead re-
moved private regions while preserving their context. Thus,
VizWiz-Priv poses a new challenge of how to successfully
train privacy detection algorithms using only the context in
which private information is located.

Another key distinction is that VizWiz-Priv is the first
privacy dataset originating from blind photographers trying
to learn about their visual surroundings. Consequently, un-
like images in existing datasets, many images are poor qual-
ity (e.g., blurry, out of focus) since the photographers can-
not verify their quality. Additionally, much of the content
is concentrated around private information that is currently
inaccessible since blind people commonly shared this in-
formation in exchange for assistance to learn about it (see
Section 4); e.g., pregnancy test results, prescription pills,
business cards, and street signs. A final bias of VizWiz-Priv
is that many images show indoor, home scenes and the unin-
tentional privacy leaks that can arise in this setting, such as
reflections of people’s faces on computer/television screens,
personal documents sitting on counter-tops, and personal
photographs strewn along the walls.

4. Visual Question Answering (VQA)

An important consideration when empowering blind
people to protect their privacy is to avoid impeding their
ability to solicit the information they seek. Specifically, in
the VQA setting, a naive solution to enhance privacy over
the status quo of sharing every visual question with remote
visual assistants (e.g., for services such as VizWiz[14] and
BeSpecular [3]) is to instruct the photographer to retake the
picture (or automatically mask out the private information)
whenever private information is detected in the image. Un-
fortunately, this would be inappropriate when a person is
trying to learn about the private information (e.g., to learn
what type of pills are in a bottle). Instead, a user would
benefit from taking another picture before sharing the visual
question only for unintentional privacy leaks. Accordingly,
we now describe our preparation of a dataset for training



Figure 3. Frequency of disclosures per privacy type with respect to the number of images for which a person asked about private content.

Figure 4. Frequency of questions beginning with different
words/phrases for the 875 instances in VizWiz-Priv where the an-
swers reside in private regions of the images. The innermost ring
represents the first word and each subsequent ring represents a sub-
sequent word up to six words in the question. The arc size is pro-
portional to the number of questions containing that word/phrase.

algorithms to automatically determine whether the question
asks about the private content. We use the 2,685 images
in VizWiz-Priv that also contain questions. Of these, 1,403
contain private images.

Visual Question Pre-Processing. For each visual ques-
tion, we followed prior work’s [25] pre-processing steps.
Specifically, we re-saved images to remove personally-
identifying metadata, transcribed audio-recorded questions
to remove people’s voices, and spell-checked questions2.

VizWiz-Priv-VQA. Next, we quantified how often pri-
vate visual information contains the answer to a visual ques-
tion. To do so, the same three in-house annotators who de-
veloped VizWiz-Priv reviewed the 1,403 visual questions

2We collected 10 answers per visual question for the 2,685 visual ques-
tions in order to contribute an 8% increase to the size of VizWiz-VQA [25].

that contain private images and indicated “Yes” if the ques-
tion would become unanswerable by removing the private
visual content or “No” otherwise. Each visual question was
assigned the majority vote label from the annotators.

We found 62% (i.e., 875) of the 1,403 visual questions
asked about private visual content. Within the larger context
of all 33,858 visual questions asked by VizWiz users (i.e.,
2,685 + 31,173 [25] visual questions), this means that more
than 1 of every 40 visual questions arose because blind peo-
ple were compromising their privacy in exchange for visual
assistance. Moreover, this statistic is likely a lower bound of
the actual visual privacy assistive needs of this population
since many people avoid sharing private information rather
than accepting the risks of sharing [11]. Our finding un-
derscores the importance of designing algorithms that can
answer questions about private visual information.

We next quantified the tendency for each type of pri-
vate information to be in the images based on whether
people were explicitly asking about private content3. Fig-
ure 3 shows the results. We found that a person was ask-
ing about private content for most images showing preg-
nancy test results (i.e., 58/59=98%), pill bottles/boxes (i.e.,
114/137=83%), letters (i.e., 55/68=81%), street signs (i.e.,
16/16=100%), credit cards (i.e., 15/20=75%), and more.
Numerous privacy categories also often occurred when pri-
vate content was unnecessarily captured in images. For ex-
ample, the private content could be safely removed with-
out impacting the ability to answer the visual question for
roughly 81% of faces, 89% of framed pictures, and 88%
of license plates. As shown, a person’s intentions to share
private information can be correlated to the type of private
information present in an image.

We visualize the questions people asked for the 875 vi-
sual questions which asked about the private content us-
ing a sunburst diagram, shown in Figure 4. This illus-
trates the frequency that the questions begin with different
words/phrases. When comparing the questions reported in
prior work about non-private questions [25] to these private
questions, we observe great similarity. For example, both
collections share a rich diversity of first words and are sim-

3Since some images show multiple private regions, this analysis also
reveals correlation of extra privacy type(s) present in an image when a per-
son asks a question about a different type of private content that is present.



ilar in question length. However, we observe a shift in the
frequency of particular questions; e.g., the recognition ques-
tion of “What is this?” occurs less often (i.e., 2.5 times less
often with 5.8% versus 14.6% in [25]), whereas the read-
ing question of “What does this say?” arises more regularly
(i.e., 4 times more often with 4% of questions versus 1% in
[25]). We hypothesize this shift away from object recogni-
tion and towards reading exemplifies the broader tendency
shown in Figure 3 that people more often intentionally cap-
ture pictures with private text (i.e., 65% of text disclosures)
than with private objects (i.e., 47% of object disclosures).

5. Algorithm Benchmarking

We now describe two studies conducted for the tasks of
predicting if (1) private content is present in a given image
and (2) a visual question asks about private content.

5.1. Private Visual Information Recognition

Dataset. We divided all 13,626 VizWiz-Priv images into
approximately a 65-10-25 split resulting in 8,825, 1,370,
and 3,431 images in the training, validation, and test sets.
We perform a stratified split on the private images with re-
spect to privacy categories in an attempt to include a pro-
portional number of each privacy type in each split.

Methods. As done for the state-of-art visual privacy
recognition algorithm [37], we also fine-tuned ResNet-
50. We benchmarked 10 variants. Four were
fine-tuned to the training datasets from VISPR [37],
VizWiz-Priv with the hole inpaintings (VizWiz-Priv),
VizWiz-Priv with the ImageNet mean assigned to hole
pixels (VizWiz-Priv-HoleMean), and the original
VizWiz-Priv images (VizWiz-Priv-Uncorrupted)
respectively. Another three were the VISPR-trained
method [37] fine-tuned to each of the following three
datasets: VizWiz-Priv, VizWiz-Priv-HoleMean,
and VizWiz-Priv-Uncorrupted. Finally, three were
fine-tuned to the combination of the VISPR dataset with
each of the above three datasets. Each method was fine-
tuned using the Adam solver with a batch size of 128 and
fixed learning rate of 0.001, employing dropout and batch
normalization during training, and training for five epochs.

Evaluation Metrics. We evaluated each method using a
precision-recall (PR) curve and the average precision (AP).

Results on Uncorrupted VizWiz-Priv Images. In Fig-
ure 5, we report the performance of each method when eval-
uated on the original, uncorrupted VizWiz-Priv test images
in order to demonstrate their utility in a practical setting.

We found that the state-of-art model [37] generalizes
well to the uncorrupted VizWiz images; i.e., AP score of
77.97%. This offers an exciting finding since the model was
not trained on images coming from blind photographers.

Figure 5. Precision-recall curves and AP scores for privacy detec-
tion algorithms evaluated on the uncorrupted VizWiz-Priv test set.

We observe considerable improvements when training
with the original VizWiz-Priv images. In comparison to the
above VISPR-trained model, we observe a 2% boost when
training the same architecture instead with the uncorrupted
VizWiz-Priv images and a 3% boost when fine-tuning the
VISPR-trained model with those images. These findings re-
inforce the well-known benefit that training on data match-
ing the test distribution yields improved performance.

Given the privacy concerns motivating this work, it also
is valuable to analyze the methods trained only with the ver-
sions of VizWiz-Priv that will be publicly-available; i.e.,
those where private content is masked out of the images
(VizWiz-Priv, VizWiz-Priv-HoleMean). When
training directly with this data, we observe almost a 13%
performance drop from today’s state-of-art model; i.e.,
77.97% versus 68.47% and 69.6%. We also observe inferior
performance when fine-tuning the VISPR-trained model to
these datasets; i.e., AP score drops from 77.97% to 75.62%
and 71.94%. We attribute these declines to the inadequa-
cies of the hole-filling methods; as exemplified in Figure 1,
the hole-filling algorithm can introduce visual artifacts that
algorithms may be learning to model. Yet, interestingly,
we observe a boost in predictive performance when training
using the VISPR images jointly with both public versions
of VizWiz-Priv; i.e., AP score improves from 77.97% to
80.22% and 78.34%. In fact, training with both uncorrupted
images (VISPR) and corrupted images (VizWiz-Priv) out-
performs training with either dataset alone. We hypothe-
size that training with both datasets helps the model to learn
to ignore the hole-filling artifacts isolated to VizWiz-Priv
while providing richer training data needed to successfully
learn cues that are predictive across both datasets.
Results on VISPR Images. We also examined the per-
formance of each baseline on the test set for the existing
state-of-art visual privacy dataset—VISPR [37], which is



a collection of images scraped from online photo-sharing
websites. The resulting AP scores for the ten methods range
from 88.08% (for fine-tuning to VizWiz-Priv-uncorrupted)
to 96.78% (for [37]). This highlights that VizWiz-Priv of-
fers a more difficult problem than VISPR, with the top-
performing algorithms achieving an AP score of 96.8% on
VISPR versus 81.1% on VizWiz-Priv-Uncorrupted.

VizWiz-Priv versus VizWiz-Priv-Uncorrupted Results.
We also evaluated how well the uncorrupted version of
VizWiz-Priv represents the publicly-available versions. We
found a high correlation between predicted scores on the un-
corrupted VizWiz-Priv images and hole-filled VizWiz-Priv
images; i.e., when computing the Pearson correlation co-
efficient, scores ranged from 0.70 to 0.89. While imper-
fect, this test set offers a reasonable privacy-free substitute
to benchmark algorithm performance in a reproducible way.

5.2. (Un)intentional Privacy Leak Recognition

We now evaluate methods for a novel binary classifica-
tion problem of predicting whether a given visual question
asks about private visual information in order to distinguish
between intentional and unintentional privacy disclosures.

Dataset. We performed a stratified split on the 2,685 vi-
sual questions in order to preserve the proportions of private
versus non-private images. This resulted in 2,148 and 537
visual questions in the training and test sets respectively.

Methods. We benchmarked ten methods. We evaluated a
Status Quo predictor which returns a random value to
reflect the best a system can achieve today; i.e., guessing.
Also included are two related privacy detection algorithms
from the previous section; i.e., Priv-Detection [37]
and Priv-Detection-V&V (training on both VizWiz-
Priv and VISPR). We also predicted directly from ques-
tions (i.e., Q), encoding each as a 300-dimensional GloVe
word-embedding and training a single-layer gated recurrent
unit (GRU) network with 300 hidden states. We addition-
ally predicted directly from images, encoding each image
with ResNet-50 and training three variants: using the im-
ages as is (i.e., I-original), with private regions re-
placed by mean values (i.e., I-hole-mean), and with
private regions replaced by the hole-filling algorithm (i.e.,
I-hole-inpaint). Finally, we investigated three mod-
els that combine the question with each image variant.

Evaluation Metrics. We assessed the performance of
each method using a precision-recall curve and its AP score.

Results. Results are shown in Figure 6. As observed, it
is possible to predict whether a visual question asks about
private content directly from the visual question, despite the
significant variety of privacy types and question types. For
example, all Q+I methods outperform the status quo ap-
proach by at least 30 percentage points. Our findings also
demonstrate the value in directly learning for the task rather

Figure 6. PR curves and AP scores for algorithms that predict
whether a visual question asks about private visual content.

than relying on predictors for the related task of detecting
private visual information; i.e., AP improves from below
40% to above 60% for all Q + I methods.

We observe that the question and image each offer valu-
able and complementary clues regarding whether a visual
question asks about private information. Specifically, while
both the question (Q) and image (I-original) are pre-
dictive alone (i.e., 30.25 and 24.9 percentage point boost
over the status quo respectively), we observe a further 3.5
percentage point boost when using these features jointly.

Our findings also highlight the utility of images with syn-
thesized content for training algorithms. We observe that
training using the context of private content without the
private content itself improves accuracy by approximately
17 percentage points compared to the status quo approach.
This benefit arises whether filling holes using the image
mean or state-of-art hole-filling algorithm. These findings
highlight it is possible to develop privacy-based algorithms
without having access to the private content.

6. Conclusions
We proposed the first dataset and study that reveals vi-

sual privacy issues faced by people who are blind who are
trying to learn about their physical surroundings. Exper-
iments demonstrated its benefit for teaching algorithms to
predict the presence and purpose of private information.
Valuable future work includes (1) detecting private content
to support redacting it [36] (a more challenging problem
than recognition), (2) improving hole-filling algorithms to
replace private content (e.g., [53]), (3) expanding the pri-
vacy taxonomy (e.g., with scene types and actions), and (4)
adding images from wearable cameras (e.g., [4, 5]).
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