
VRGit: A Version Control System for Collaborative Content
Creation in Virtual Reality

Lei Zhang Ashutosh Agrawal Steve Oney Anhong Guo
University of Michigan University of Michigan University of Michigan University of Michigan
Ann Arbor, MI, USA Ann Arbor, MI, USA Ann Arbor, MI, USA Ann Arbor, MI, USA
raynez@umich.edu agarashu@umich.edu soney@umich.edu anhong@umich.edu

Figure 1: An illustration of VRGit. A History Graph (HG) that represents non-linear version history is anchored on the user’s
left arm, where each node is a 3D miniature of that version. Inside each miniature, objects are highlighted using color coding if
they are changed compared to the previous version. Mini avatars are anchored in the HG to represent which version users are
in. Users can also create portals to monitor other users’ frst-person views. A shared history visualization facilitates group
discussion by anchoring the HG on a surface and allowing users to preview a version and reuse objects collaboratively.

ABSTRACT
Immersive authoring tools allow users to intuitively create and ma-
nipulate 3D scenes while immersed in Virtual Reality (VR). Collab-
oratively designing these scenes is a creative process that involves
numerous edits, explorations of design alternatives, and frequent
communication with collaborators. Version Control Systems (VCSs)
help users achieve this by keeping track of the version history and
creating a shared hub for communication. However, most VCSs are
unsuitable for managing the version history of VR content because
their underlying line diferencing mechanism is designed for text
and lacks the semantic information of 3D content; and the widely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581136

adopted commit model is designed for asynchronous collaboration
rather than real-time awareness and communication in VR. We
introduce VRGit, a new collaborative VCS that visualizes version
history as a directed graph composed of 3D miniatures, and en-
ables users to easily navigate versions, create branches, as well as
preview and reuse versions directly in VR. Beyond individual uses,
VRGit also facilitates synchronous collaboration in VR by providing
awareness of users’ activities and version history through portals
and shared history visualizations. In a lab study with 14 participants
(seven groups), we demonstrate that VRGit enables users to easily
manage version history both individually and collaboratively in
VR.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Collaborative and social computing systems and tools.

KEYWORDS
Virtual Reality, Collaboration, Version Control System

https://doi.org/10.1145/3544548.3581136
mailto:permissions@acm.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

ACM Reference Format:
Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo. 2023. VRGit:
A Version Control System for Collaborative Content Creation in Virtual
Reality. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3544548.3581136

1 INTRODUCTION
Virtual Reality (VR) can enable intuitive and compelling experiences
for users to explore immersive, three-dimensional (3D) content. For
instance, immersive authoring tools ofer a “What You See Is What
You Get” experience by allowing users to create, edit, and evaluate
3D content directly while immersed in VR [1, 25, 30, 47, 79, 80].
Research has also shown that VR provides an efective tool for users
to evaluate ideas for 3D spatial content in multiple creative domains
such as game design [75], architecture [27, 55], urban planning [68],
and interior design [36]. Furthermore, as modern workforces in
these domains are becoming diverse in terms of their skill sets
and backgrounds, better collaborative content creation support is
needed for coordination among various roles including designers,
developers, and customers/end-users [5, 40].

Collaborative content creation is an iterative process in which
users may perform numerous editing operations, explore various
design alternatives, communicate with collaborators, and shift be-
tween individual and shared activities frequently [32, 33, 72]. Keep-
ing track of version history in this process is important for providing
the ability to revert to previous states if necessary. In addition, pro-
viding rich history-keeping can help users explore diferent design
alternatives in the task of creative content production [64]. In col-
laborative settings, keeping track of version history is even more
challenging since users may also need to maintain awareness of col-
laborators’ activities. For example, imagine you are collaborating on
designing a VR scene, and you would like to explore a design variant
of the current scene without interfering with your collaborators’
design. Moreover, when you and your collaborators are working on
diferent design variants, you would like to know which versions
your collaborators are working on and communicate ideas with
them. If all the versions of the scene, including diferent branches
that collaborators are working on, are preserved and visualized in
VR, you could easily “travel” between versions and communicate
with your collaborators across versions or branches. While existing
systems enable compelling experiences for creating and manipulat-
ing 3D content in VR, most only enable basic history-keeping (e.g.,
a linear timeline) for single users in VR.

Version Control Systems (VCSs) have been used widely for keep-
ing track of version history of digital content among collaborators.
Most current VCSs, however, are designed for text rather than spa-
tial data such as 3D scenes. Research in VCS for 3D modeling has
explored some efective mechanisms for one or two features of a
VCS such as comparing and merging scenes or models on 2D dis-
plays [9, 10, 18, 20, 63], but still lacks knowledge regarding how
to enable multiple users to track version history without breaking
the fuidity of immersive authoring. On the other hand, although
collaboration systems in VR have long been an exploration in the
area of HCI and CSCW [35, 58, 59, 78], most of them lack version
control capabilities and keep only one version of 3D scenes at a time
for all users. In this work, we aim to explore providing visualization

and interactions of version history that are appropriate for collabo-
rative immersive environments. We provide a complete, standalone
design and implementation for version control in VR in order to
avoid breaking the immersion and the workfow of collaborative
content creation, to leverage intuitive interactions that VR afords,
and to harness people’s spatial skills for understanding and navigat-
ing 3D environments. We also take a diferent approach by enabling
collaborators to stay in diferent versions of 3D scenes and explore
supporting awareness and communication among collaborators
across diferent versions.

We introduce VRGit, a new VCS for collaborative content creation
in VR. VRGit enables novel visualization and interactions for version
control commands such as history navigation, commits, branching,
previewing, and re-using. VRGit is also designed to facilitate real-
time collaboration by providing workspace awareness, whether
users are working on the same version or diferent versions. More
specifcally, when users are in diferent versions, our system en-
ables shared views for understanding where collaborators are and
what they are doing. VRGit also introduces a shared visualization
to reduce friction during group discussions when users are in the
same version, by providing awareness related to version control op-
erations such as navigating version history and re-using 3D content.
Finally, we describe an exploratory lab study with 14 participants in
which we evaluate the usability and utility of VRGit. Results show
that it enables users to easily keep track of non-linear version his-
tories and improves the collaborative workfow of content creation
in VR.

The contributions of our paper are: (i) the design and imple-
mentation of a new VCS for collaborative content creation in VR,
and (ii) results and design insights gained from an exploratory lab
study that evaluated the usability and utility of the VCS for content
creation in VR.

2 RELATED WORK
Our work draws inspiration from prior literature in VCSs for 3D

scenes, graphical history visualization, collaborative virtual envi-
ronments, and visualization and interaction techniques in VR.

2.1 Version Control Systems for 3D Scenes
A Version Control System, also known as a Revision Control Sys-
tem, enables users to keep historical versions of digital content.
VCSs such as Git [29] and Subversion [3] have been popular in
the domain of software engineering to help developers keep track
of the history of source code by committing changes along with
text messages that describe the changes. Most VCSs also support
asynchronous collaboration among multiple developers at remote
locations by allowing them to manually create and merge branches.
However, most existing VCSs are unsuitable for tracking and under-
standing changes of 3D scenes because the underlying line difer-
encing mechanism is designed for tracking changes of text fles and
thus lacks high-level semantic information of spatial data such as
two-dimensional (2D) images and 3D scenes. Recent work, primarily
from the Computer Graphics community, has thus explored tech-
niques for tracking changes in media fles such as 2D images [13]
and 3D scenes [9, 10, 18, 20, 21, 63], which can be categorized into
two approaches: state-based and operation-based.

https://doi.org/10.1145/3544548.3581136

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Summary of prior VCSs and VRGit. VRGit contributes to a full VCS in collaborative immersive environments.

System Content Type Version Control Features State/Operation Real-time Collaboration Immersive
Navigation+ Commit Branch Dif Merge

Git [29] Text ✓ ✓ ✓ ✓ ✓ State-based
Chen et al. [13] Image ✓ ✓ ✓ ✓ ✓ Operation-based
Dobõs et al. [21] 3D Scene ✓ ✓ ✓ ✓ ✓ State-based
MeshGit [18] 3D Scene ✓ ✓ State-based
SceneGit [10] 3D Scene ✓ ✓ State-based
MeshHisto [63] 3D Scene ✓ ✓ Operation-based ✓
CSculpt [9] 3D Scene ✓ ✓ Operation-based ✓
Spacetime [78] 3D Scene ✓* State-based ✓ ✓
Lilija et al. [45] Spatial Recordings ✓ State-based ✓

VRGit (this work) 3D Scene ✓ ✓ ✓ ✓* ✓** Operation-based ✓ ✓

Navigation+: History visualization and navigation.
✓*: The system allows users to compare diferent versions instead of calculating the diferences.
✓**: The system allows users to reuse content from diferent versions instead of merging all changes.

State-based approaches aim to build efective mechanisms that
can automatically derive changes by comparing two states, e.g. a
version and its successor, after the changes occur. Prior work fo-
cusing on state-based approaches has strived to derive changes at
diferent levels of granularity [10, 18, 20, 21]. For example, Doboš
and Steed version 3D assets at a coarse granularity of individual
nodes of a scene graph such as individual meshes [20, 21]. SceneGit
can derive changes at a fner granularity of vertices and faces [10].
In the domain of drawing, techniques such as object-oriented draw-
ing can also preserve states of individual attributes and allow users
to revert to previous states of an attribute without interfering with
other attributes [77]. The other approach is operation-based, which
records changes while they occur. This approach typically records
editing operations that users make, and then applies the operations
to a state to transform it to the successor state [9, 13, 63]. For exam-
ple, MeshHisto stores and transmits mesh diference by encoding
them as sequences of primitive editing operations [63]. In our work,
VRGit uses operation-based change tracking since it is more precise
and efcient in determining the diference between two states and
provides functionality such as replay and undo. It has also been
applied to prior content creation tools such as 3D modelling [63]
and sculpting [9].

Our work contributes to existing literature in VCSs for 3D scenes
by introducing a full VCS in collaborative, and immersive environ-
ments (Table 1). While prior work has been focused on one or two
features of a VCS such as difng and merging and has targeted VCSs
on 2D screens, VRGit aims to explore novel visualization and in-
teractions of a VCS and provide real-time workspace awareness in
collaborative content creation in VR.

2.2 Graphical History Visualization
Enabling intuitive graphical visualization and interactions for ver-
sion or operation history has long been an area of exploration in
HCI. Prior work has explored visualization of history using repre-
sentations such as layers of operations [49], snapshots of before-
and-after states [43], and timeline views of history [62]. Later work
has then built on these representations and explored techniques
that enable users to better understand and interact with operation

history. For example, Klemmer et al. built upon snapshots of states
of collaborative web editing sessions and embedded non-linear
branches in the timeline view [38]. Nakamura and Igarashi cap-
tured the Graphical User Interface (GUI) input and output history of
graphical documents and visualized the snapshots with annotations
of detailed operations [50]. Chronicle instead captures the video
history of graphical documents and provides users with a set of
probes to flter the revision history [31]. More recently, Chen et
al. explored using a Directed Acyclic Graph (DAG) for versioning
image editing operations [13]. However, all the above systems for
visualizing and interacting with version history are designed for
text or 2D content such as paintings and images.

Most graphical history representations for 3D scenes today have
primarily focused on viewing and interacting through 2D displays.
For example, commercial Computer-Aided Design tools such as
Autodesk Maya or Vistrails are able to record modelling history
and provide a list of operation history in the editor. Another line of
research in this space is focused on interactive summary of long
sequences of editing operations. For example, MeshFlow [17] and
3DFlow [19] are proposed to summarize the history of mesh editing
by clustering editing operations. Closer to our work that visualizes
history in VR, Lilija et al. introduced techniques of visualizing ob-
jects’ trajectory in 3D scenes and allowing users to view the history
of spatial recordings in VR [45], though not in the context of a VCS.
Our work expands on prior work to explore graphical representa-
tion and interactions of non-linear history (i.e. branching) in a VCS

for immersive VR authoring.

2.3 Collaborative Virtual Environments
Researchers have acknowledged the importance of designing real-
time collaborative systems that support workspace awareness, i.e.
understanding of other collaborators’ interaction with the shared
workspace [32]. Prior work has explored various techniques for
supporting awareness of other users in collaborative virtual envi-
ronments such as the use of gaze [59], gestures [52, 58, 76], and
pointers [24]. Recent advances of the underlying sensing technolo-
gies have also allowed for capturing and rendering full bodies of
users via 2D projection (e.g. Room2Room [56]) or 3D hologram

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

(e.g. Holoportation [53]). Beyond the awareness of other users,
workspace awareness also involves understanding of collaborators’
workspace context. To achieve that, sharing views of the workspace
has shown to be an efective technique [26, 28, 51, 73]. For instance,
Fraser et al. proposed using peripheral views to support peripheral
awareness of other users in collaborative virtual environments [26].

A common limitation of the above techniques is that they are
designed for providing awareness when there is only one version of
3D scenes and all users are virtually co-located and therefore visible
to each other in that version. Highly relevant to our work, Space-
time proposes the concept of parallel objects that allow users to
create parallel versions of the same object similar to branching [78].
However, their technique still requires users to land on one fnal
version and renders all parallel designs using diferent levels of
transparency in the same version. In this work, we take a diferent
approach that allows users to manually branch into diferent vari-
ants of the 3D scenes and make changes in those branches while
still maintaining workspace awareness when they are located in
diferent versions or design variants (i.e., branches) of 3D scenes.

2.4 VR Visualization and Interaction Techniques
Our work also builds on prior visualization and interaction tech-
niques for object manipulation and navigation in VR. Prior work
in immersive authoring tools has proposed intuitive interaction
techniques that allow users to build 3D scenes through direct manip-
ulation and to leverage their spatial reasoning skills [1, 30, 47, 48, 60,
80]. Other research has proposed several techniques for interaction
and navigation in 3D scenes of large distances [8, 42, 46, 57, 61, 67].
For instance, Mackinlay et al. propose the using teleportation to
navigate large virtual workspaces [46]. Kunert et al. use photos
of 3D scenes as portals that allow users to navigate in space and
time [42]. To interact with objects at a large distance, “go-go” inter-
action uses the metaphor of interactively growing the user’s arm to
interact with distant objects in a virtual environment [61]. Stoakley
et al. introduced the concept of World in Miniature (WIM), which
enables both navigation and interaction in a large VR scene. A WIM

represents the virtual environment and allows users to manipulate
objects ofered by the miniature, or rapidly teleport in the virtual
environment by selecting locations directly in the miniature [67].
It also has the beneft of allowing users to see a preview of the
immersive virtual environment without having to travel back and
forth between diferent views.

In this work, we contribute to the literature by using the tech-
niques of WIM and portals in the context of version control. More
specifcally, we extend the concept of World in Miniature by using
them as nodes in the history graph for previewing snapshots and
changes of diferent versions and reusing objects in diferent ver-
sions. We also extend the concept of portals to communicating and
sharing views between collaborators in the VCS.

3 VRGIT
VRGit is a VCS for VR that enables users to keep track of multiple
versions of 3D scenes, to create and navigate diferent branches, and
to preview and reuse content from diferent versions. Beyond sup-
porting individual uses, VRGit also supports real-time workspace
awareness of users’ activities and version history by integrating

Figure 2: The immersive authoring environment. A menu is
always attached to the left controller. Users can select pre-
made furniture models of diferent categories and place them
in the VR scene.

synchronous communication and enabling a shared history visu-
alization. To instantiate the visualization, interaction, and collab-
oration design of VRGit, we frst build an immersive authoring
system that enables users to create and manipulate 3D scenes di-
rectly in VR. We choose an example of designing the foor plan of
an apartment for evaluation with end-users, because it has been a
key VR application since it requires users’ spatial capabilities and
has been used to evaluate prior collaborative VR systems [36, 54].
We also believe the design concepts behind VRGit are generalizable
to other application domains (e.g., game scenes design) as well, be-
cause the immersive authoring operations (e.g., manipulation of 3D

objects), version control mechanism (e.g., commit and branching),
and collaborative support (e.g., portals and shared visualization)
are independent of the task context.

3.1 Immersive Authoring Environment
We build an immersive authoring environment that allows users
to design the spatial layout of an apartment, as a foundation for
instantiating the concepts of VRGit. Users can place and manipulate
pre-made furniture models in an empty apartment, as seen in Fig.
2. Our system is scoped to authoring VR scenes at a fxed scale (e.g.,
city scales in urban planning or room scales in interior design) to
better focus on the challenges of visualizing and interacting with
version histories in VR, and keeping workspace awareness among
collaborators across diferent versions.

3.2 Version Control System
VRGit supports full version control of the 3D scenes during the edit-
ing process. We use an operation-based history model that records
users’ edit operations and then applies the operations to a state to
transform it to the successor state. We use this model because (i)
it has been utilized in prior editing tools such as desktop-based 3D

modeling [63] and 2D images [13], and (ii) it can be more precise
and efcient in determining the diference between two states [63]
and provides functionalities such as replay and undo [13]. Our
current system supports common immersive authoring operations
including creation, transformation, and deletion. We use a Directed
Acyclic Graph (DAG) as the underlying data structure where each

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: The summarized version history. The upper area
refers to part of the DAG that generate a node whenever there
is a new operation. The middle area shows part of the summa-
rized HG where V4-8 are clustered based on operation depen-
dencies. The bottom area shows the constraint of workspace
awareness, where a version that another user is working in
will always be shown.

node represents an editing operation with its relevant parameters
and each edge along with its direction represents the temporal
order between two operations.

3.2.1 History Visualization and Navigation. We visualize a directed
graph on the users’ left arm to represent version history as a His-
tory Graph (HG). Each node is visualized using a miniature of the
version state and each edge represents the temporal order between
two versions. We also show the version number in text in each
node. Inside each miniature, we highlight the diference with its
prior version by changing the material of the furniture with color
coding: we use green to represent an added object, yellow to rep-
resent transformation of an existing object, and red to represent a
deleted object. Because of the potential complexity and large size
of the underlying DAG, the HG only shows users the summarized
version history, as shown in Fig. 3. Our summarization techniques
take into account three parameters: (i) operation dependencies, (ii)
spatial constraints, and (iii) workspace awareness. We use a simple
timeout mechanism to determine operation dependencies, which
generates a new node in the history graph after the user has been
idle for a specifed amount of time (10 seconds when working alone,
15 seconds when working collaboratively—defaults that we found
to work anecdotally). Spatial constraints allow us to determine the
number of miniatures and branches to display given the amount
of available space in a visualization anchor (e.g. users’ arms or a
tabletop). VRGit also always shows which versions users’ collabo-
rators are working in, as a way to improve workspace awareness.
Users can select the previous or next version in the history graph
by pushing the thumbstick on the left controller horizontally. A
cursor of a yellow square is then shown around the miniature when
a version is selected. To enter a version, users can select the version
and press a button on the controller. The layout of the environment
will then change to the state of that version. When there are multi-
ple branches at a node (shown as parallel siblings in the HG), users
can also switch branches by pushing the thumbstick vertically.

3.2.2 Commits and Branching. In VRGit, commits (checkpoints in
the repository) are made automatically by the system whenever the

(a) Visualization of three branches.

(b) Visualization after switching to the next branch.

Figure 4: Screenshots of the History Graph (HG) that visual-
izes multiple branches. The user stays in the version of V17.
In 4a, the user is selecting V4 which belongs to the branch
highlighted in light green. Users can switch to other branches.
After switching branches (4b), the user is selecting V4.0 which
belongs to the branch highlighted in dark red.

user performs a new operation. VRGit does not require that users
explicitly perform commits, which could interrupt their workfow,
while allowing users to revert back to previous versions if any
misoperations occur. When a new commit is made, the system will
append a new node that represents the editing operation to the
underlying DAG. The summarized HG will in turn be updated based
on the new DAG.

VRGit enables visualization of multiple branches and intuitive in-
teractions for creating, updating, and navigating diferent branches
in the visualization, as shown in Fig. 4. Creative tasks such as con-
tent creation usually involve numerous trial-and-error experiments
and design variants (branches) [33, 72] and the ability to keep mul-
tiple branches has shown to be an important building block of
creativity support tools [64]. In our system, users can easily create
a branch based on a historical version by frst entering that version
and then pressing a button on the controller. The system will then
create a copy of the node that represents the historical version, and
append the copy to its parent node in the underlying DAG. The HG

will then be updated by laying out the branches in a circular path
that takes advantage of depth aforded by VR displays. The user will
be automatically switched to the new branch once it is created and
can update the new branch modifying the 3D scene. Users can use
the thumbstick to navigate diferent existing branches as mentioned
above.

3.2.3 Previewing and Reusing. A preview allows users to easily
examine the state of a historical version without actively entering
that version, typically known as “snapshots” or “thumbnails” in
2D graphical editing tools [43]. In our system, as the miniatures
in the HG can be small for inspection depending on the anchor
of the HG, we enable users to preview of a version in the HG by
showing an expanded miniature of the version. Users can open a
preview of a version by using the raycast to aim at the version and

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

(a) Preview. (b) Reuse.

Figure 5: Screenshots of previewing and reusing in VRGit.
In 5a, the user is in V14 and opening a preview of V5.11. In
5b, the user reuses the chair in the preview by aiming at it
using the raycast shooting from the controller and pressing
a button on the controller. The chair then appears in the
environment and the system automatically creates a commit
that brings the user to V15.

pressing a button on the controller, as shown in Fig. 5a. They can
also resize the preview to better inspect changes in the version.
Multiple previews can exist at the same time and users can directly
manipulate the preview for the convenience of inspection.

Another novel functionality that previews aford is reusing spa-
tial design from one or more previews. In conventional VCSs, reusing
or combining data between versions is done via merging, which
applies all changes of one branch to another. Along this line, prior
work has also proposed mechanisms for merging changes and re-
solving conficts of two 3D scenes [10, 18, 20]. However, merging is
typically limited to fusing all changes between only two versions at
a time. Content creation, on the other hand, is often an open-ended
design process that is subject to unexpected changes of directions
or goals [15]. It is therefore common for users conducting creative
tasks to explore diferent design variants by selectively mixing-
and-matching changes from multiple sources [11, 12, 44, 69]. For
instance, imagine an architect who wants to mix-and-match de-
signs of the balcony from one version, the furniture from a second
version, and decoration from a third version. It would be useful if
they can open previews of the three versions and directly reuse
these specifc parts of the 3D scene. Therefore, instead of fusing all
changes between two versions at a time, our system allows users
to reuse objects from multiple versions. In VRGit, users can reuse
spatial design of diferent versions and selecting the target item in
the previews, as shown in Fig. 5b. The selected furniture will then
appear with the same transformations (i.e., position, rotation, and
scale) in the user’s current version. To incorporate designs from
multiple versions, users can create multiple previews and reuse
objects in those previews accordingly.

3.3 Collaboration in VRGit
Collaboration is an important component in most VCSs. For instance,
VCSs such as Git and Subversion are designed for multiple develop-
ers at remote locations to collaborate with each other, by allowing
them to sync changes (e.g. commits or branches) to the repositories

through a central server. The collaboration in such VCSs is asynchro-
nous and users typically work in separate editing environments.
Numerous synchronous 3D scene editing tools exist (e.g. [9, 63]), but
they do not support active branching or navigating history in their
VCSs. In VRGit, users can collaboratively author the 3D scene when
they are in the same version, analogous to a synchronous editing
tool. They are able to see each other’s edits and avatars, point to
objects with raycasts, and talk to each other via audio communi-
cation. VRGit also allows users to create branches and navigate
to diferent versions, in order to explore diferent design variants
without interfering with each other. In this scenario, they can work
on their own branches but are not able to see each other’s avatars
in the environment, analogous to an asynchronous editing tool. In
all, collaborators can easily separate or reconcile by navigating and
branching into the same or diferent versions.

In this work, we address the unique challenges of supporting
communication and workspace awareness in immersive authoring
through a VCS. We consider two primary scenarios: (i) when users
are working in diferent versions and (ii) when users are working
in the same version. In most existing VCSs, being in diferent ver-
sions means users are working in separate workspaces and there
is little support or need for real-time workspace awareness since
there is no presence of users or activities in the workspace [71].
However, as in VRGit, users can easily switch and work in difer-
ent versions or branches, so there should be a consistent presence
of collaborators and their activities as well as a convenient way
to communicate in order to maintain workspace awareness. We
incorporate mini-avatars in the HG that indicate in which version
(where) collaborators are located. We also integrate the concept of
portals and shared history visualizations in our VCS that help users
understand what collaborators are doing and communicate with
each other when they are working in diferent and the same version
respectively. We detail the design of these two features below.

3.3.1 Portals. In collaborative authoring, it is common for collabo-
rators to adopt a ‘multi-synchronous’ collaboration styles in which
they work simultaneously in isolation and subsequently integrate
their contribution [22]. VRGit enables this by allowing users to
create and work in diferent branches, and combine their work
together by reusing designs from multiple branches. An important
aspect in this process is how to enable communication between
collaborators and awareness of their activities in order to ensure
common ground [14] and to avoid redundant work [37]. VRGit
addresses this by integrating portals into the HG that allow users to
easily monitor and communicate with each other when they work
in diferent branches. Portals are 2D video streams from collabo-
rators’ frst-person view, which have been shown to be useful in
understanding collaborator’s activities [2, 39]. Users can create a
portal of another user by using the raycast from the controller to
aim at the mini-avatar appearing in the HG and pressing a button
on the controller. A 2D plane showing the target user’s frst-person
view will be created next to the mini-avatar, as shown in Fig. 1 (left).
Users can directly manipulate and place the portal.

3.3.2 Shared History Visualization. In VRGit, shared history visual-
ization is designed to facilitate discussions about multiple versions
(e.g., to compare features) or about the edit history itself, as shown
in Fig. 6. A unique challenge for the VCS under this setting is how

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: The workfow of shared history visualizations. When two users are working in the same version, one user can start a
shared history by pointing at the HG on the left arm and pressing a button (top left). The shared history visualization will then
be anchored on the table and the sharer can select a version (highlighted in dashed line) for all users (top right). They can then
enter that version collaboratively (bottom left). Finally, all users can collaboratively preview and reuse the lamp from another
version (bottom right).

to maintain awareness of version history and version control oper-
ations from collaborators. As each user keeps a local HG on their
left arm, similar to a local copy of the entire repository in VCSs such
as Git, their views of the HG may be diferent due to navigating
versions and switching branches. Therefore, there is little aware-
ness of collaborators’ version control operations such as navigating
and entering diferent versions, and it is difcult to refer to specifc
versions during discussion. VRGit addresses this by introducing
shared history visualization where the local HG originally anchored
on each user’s arm moves to a shared location in the virtual scene.
One sharer is required to create the shared history visualization by
using the raycast to aim at the HG anchored on the arm and pressing
a button on the controller. Then every user in the same version
will be able to see an animation of the HG moving from their arms
to a shared location in the virtual scene. Similar to screen sharing,
the sharer can interact with the shared visualization to navigate
history, switch branches, and create previews. The sharer can also
move the shared history visualization through direct manipulation.
The operations on the shared history visualization are synced for
all sharees who are in the same version to ensure they have the
same view and understanding of the shared history visualization.
For instance, when the sharer navigates and enter an older version,
all sharees are able to see the navigation in the shared history visu-
alization and enter the version with the sharer. When the sharer
creates a preview and reuses objects from the preview, all sharees

3.4 System Implementation
VRGit is implemented using Unity 2020.2.7 and runs on Oculus
Quest or Rift headsets. The overall architecture of our system is
shown in Fig. 7. We use the Photon Voice1 plugin in Unity to enable
voice chat among users. The rest of our functionalities are mainly
synced through a Firebase server.2 More specifcally, the applica-
tion encodes the animation of avatars that is tracked in Oculus in
binary and updates the document linked to the user ID on Firebase.
In VRGit, operations of each user are synced through the operation
document on Firebase and used to update the local copies of HGs in
each application. We currently support fve operation types: cre-
ation, transformation, deletion, entering, and branching. The frst
three are immersive authoring operations and the rest are manual
operations in the HG that need to be updated. When users start a
portal to share their frst-person views and communicate with each
other, we encode the video streams in binary using WebRTC3 and
sync the streams through Firebase. Finally, while all of the above
functionalities are synced in both directions, the shared history
visualization is in one direction. When one user becomes the sharer
by starting a shared history visualization, all the operations from
the sharer such as navigating history, switching branches, and pre-
viewing and reusing are sent to the server. All the sharees then pull
those shared history operations and update their shared history
visualization based on the operations.

can see the preview being created and the objects being reused in 1https://www.photonengine.com/voice the current version. 2https://frebase.google.com/
3https://webrtc.org/

https://3https://webrtc.org
https://2https://firebase.google.com
https://1https://www.photonengine.com/voice

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

Figure 7: The system architecture of two applications run-
ning VRGit. VRGit uses two servers: Photon Voice and Google
Firebase. All applications write and read audio data from
the Photon Voice server to sync voice communication. Ap-
plications sync the movement of users’ avatars by writing
and reading data of Oculus headset and controllers from the
Avatars document on Firebase. Similarly, applications sync
their version control operations through the Operations doc-
ument and their video data through the Portals document.
Finally, for shared history visualization, only the sharer (i.e.,
App 1) writes data to the Shared History Operations docu-
ment and only the receiver (i.e., App 2) reads data from the
document.

4 EVALUATION
We conducted a qualitative user evaluation of VRGit with two
goals: (i) to evaluate the usability and utility of the visualization
and interaction of the Version Control System, and (ii) to assess how
well the system support people’s communication and awareness in
a collaborative task.

4.1 Participants
We recruited 14 participants in seven groups (10 female and 4 male,
age 20–28) from a university in the United States through public
email lists of a department. All participants had prior experience
using VR devices. Three groups of participants were friends and
four groups were strangers. Each participant was compensated
with $30 USD Amazon gift cards for an approximately 120-minute
study. Our study was approved by our institution’s IRB.

4.2 Procedure
Our study was divided into two sessions. The frst session was
completed by participants individually and the second session was
completed collaboratively by three people (two participants and one
researcher). To simulate remote collaboration settings, participants
were separated in two diferent rooms where they cannot verbally
communicate unless using our system. The frst session began
with an introduction and a walkthrough of the system that lasted
approximately 30 minutes. During the walkthrough, participants
were shown individual features and asked to complete some atomic
tasks to get familiar with those features. After the walkthrough,
participants were asked to complete an individual task to iteratively
design the spatial layout of an empty apartment. The individual
design iteration task was designed to evaluate how well our system
could help users navigate, understand, create branches, and reuse

designs across versions. The task took approximately 15 minutes
to complete and will be detailed in the next section. After the
individual task, participants were asked to take of their headsets
and fll out a survey that examines the usability and utility of the
VCS, where participants were asked to rate, on a 7-point Likert scale,
statements such as “I found it easy to use” and “I think it would
be useful.” We also examined how well the system helped users
make sense of version histories. Participants were asked to rate on
7-point Likert scale statements such as “I found it easy to know
what has been changed between two consecutive versions.” After
the survey, participants were given a 5-minute break.

After the break, participants were given debriefs on the collabo-
ration task (also detailed in the next section), which lasted about 10
minutes. After the instruction, participants were connected with
each other online. They were reminded of the main communication
features of the system such as the usage of portals and the shared
history visualization. In the second session, participants were asked
to complete a collaboration task that simulates the communication
process between a client (or buyer), acted by the frst author, and
two interior designers (or sellers), acted by the two participants.
The furniture designers needed to collaboratively come up with
two variants of the apartment. This collaborative task lasted about
30 minutes.

At the end of the collaboration task, participants flled out an-
other 5-minute survey that focuses on our collaboration features by
examining users’ workspace awareness and their communication
experience. Finally, we conducted a semi-structured interview with
the participants individually that asked about the benefts and chal-
lenges of using VRGit. The interview lasted about 15 minutes. We
aggregated all the survey data, transcribed and coded the recordings
of interview.

4.3 Task
In this section, we describe in detail the individual task in the
frst study session, and the collaboration task in the second study
session. In both study sessions, we asked participants to act as
interior designers working remotely to design the furniture layout
of a new apartment.

For the individual task, we aim to examine our VCS by asking
participants to iteratively design the layout of the living room. The
design of the task aims to emphasize the usage of the VCS including
history navigation, branching, previewing and reusing content. At
the beginning of the individual task, participants were asked to
act as an interior designer working in a company and to design
the room layout by following the instructions given by the exper-
imenters. The frst design iteration was shown as a miniature in
VR and participants were asked to recreate the layout according
to the miniature. Participants were asked to verbally notify the
experimenter once they fnished the frst iteration. After the frst
iteration, participants were then asked to undo by going back to
a historical version. Based on that version, participants were then
asked to create two design variants (branches). After the two de-
sign variants were created, the experimenter would pick a random
object in a random branch in the scene and ask the participants to
reuse the object in another branch. After the object was reused, the
participants then completed the individual task.

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

For the collaboration task, participants were placed in two difer-
ent branches and asked to freely design the room for two minutes.
After that, we aim to prompt the usage of portals between users by
giving them information access to diferent aspects of the design
principles. More specifcally, one participant was given access to
principles of furnishing styles (e.g. color matching, shape). The
other participant was given access to principles of furniture ar-
rangement (e.g. required furniture, placement). The principles were
incrementally shown every two minutes and displayed on the wall
in their individual virtual environments. Participants were asked
to act as if these principles were their areas of expertise. Their goal
was to make sure their designs satisfy both people’s expertise. For
example, participant A should not only make sure that the layout
satisfed the arrangement principles, but also need to communicate
with participant B to make sure that the design satisfed the styling
principles. In this way we created scenarios for the participants to
ask each other for design feedback through the portal. The design
principles were also fexible enough that resulted in design alter-
natives that were sufciently diferent from the two participants,
which were spread across two separate branches from participants
A and B. Finally, the client (i.e. the researcher) joined the session
and started a group discussion involving three people. The goal of
the client was to ask for a new design option that incorporated the
designs from both participants and to make sure that a shared his-
tory visualization is created by either participant A or B. In this way,
we encouraged group discussions via shared history visualization.

5 RESULTS
All participants were able to complete the tasks using VRGit and
thought the system was highly useful for managing version history
in iterative design tasks and maintaining awareness and commu-
nication with collaborators. Participants also complimented that
the system was fun and cool to use: “I thought the system is really
cool; It felt like I was in a futuristic movie” (P2a). In the following
sections, we provide more detailed insights gained from the usabil-
ity and utility survey and the retrospective interview. We center
our fndings around the two evaluation goals, (i) the usability and
utility of VRGit, and (ii) the communication and awareness support
in the collaboration task.

5.1 Usability and Utility of VRGit
5.1.1 History visualization and interaction required low efort. Par-
ticipants felt that the design of VRGit made it easy to understand
historical changes and allowed easy access to specifc versions. Par-
ticipants reported in the survey (on a Likert scale of 1-7) that it
was easy to track the evolution of design across various versions
(avg=6.2, sd=0.6) and see the changes between two consecutive
versions (avg=5.9, sd=1.0). Participants compared to existing VCSs
and thought that the miniature representation of nodes in the HG

costed low efort to understand the history. “I do think it is really
useful. When I use Github or Photoshop, for the previous versions you
have to open up the fles and it is not very visual so you have to go
through each one.” (P1a) “Compared to something like Git, where I
have struggled to make sense of things like which branch I’m on or
how it difers from other branches, I really like the visualization of the
VR system, and being able to see little preview models of the rooms

and the way they branch.” (P7a) The color highlighting mechanism
also made it easy to quickly understand “what has been added and
what has been deleted” (P5a) between two consecutive versions.

Participants also found it useful to navigate and enter diferent
versions (avg=6.4, sd=0.7). Participants commented on the simi-
larity to existing VCSs like Git, in which users can easily revert
to previous states if necessary. “I think the version history is very
similar to Git...like on GitHub you can return back to previous version.
That’s really easy in case you make a mistake.” (P6a) However, the
interactions of navigating and entering diferent versions (avg=4.4,
sd=1.7) introduced a learning curve that participants sometimes
could not recall which buttons to press on the controller for certain
actions. “Some of the controls were hard to remember, you know, there
was a lot of learning in that. But the guide with most of them written
out helped.” (P5a) Another reason they found it difcult to navigate
to diferent versions was the potential large size of the HG. “I felt
when looking at the version history, especially when it becomes longer,
it is harder to see and navigate to previous versions.” (P1a)

5.1.2 Branching allowed easy exploration of multiple design variants.
Participants generally thought it was easy (avg=5.6, sd=1.2) and
useful (avg=6.1, sd=1.1) to create multiple branches. Participants
thought that branching was particularly useful when users wanted
to experiment and make changes based on earlier versions. “If you
want to make a little bit of change of something, or if I proceed too
much but I want to go back and change that one a little bit. This kind
of thing would be very hard for me to keep track of the hierarchy...but
if I have a branch, I can actually make diferent version in the same
workspace and show it to other people in that workspace.” (P7b) Users
thought the visualization of multiple branches next to in a semi-
circular shape allowed easy comparison of diferent design variants.
“I think it [branches] is really helpful because there are projects where
I want to compare diferent versions. I wanna have those on hand to
visualize for clients... I think it’s really more persuasive to have the
comparative visuals right next to each other.” (P5a)

5.1.3 Previewing and reusing were useful for comparison and efi-
ciency. Participants generally found it easy (avg=5.2, sd=1.7) and
useful (avg=6.3, sd=0.6) to see the preview of a version. Previews
are suitable for closer inspection than the nodes, allowing users
to control the viewing angle by direct manipulation and to get a
holistic understanding of the foor plan. This has been mentioned
by participants in comparison to portals, in which users did not
have control over the views and could only see part of the foor plan.
“I feel like for me it was a lot more useful if I pulled up a preview of
their version rather than looking through the portal because I have the
bird-eye view and I can move it [the preview] around.” (P7a) Opening
previews of multiple versions were also useful for comparison. “I
don’t know if it is a feature but if we were able to make previews of
multiple versions at one time and put them next to each other. I think
it would be pretty useful to compare and get the bird-eye view of all of
them next to each other.” (P2a) Participants also thought it was easy
(avg=5.6, sd=1.4) and useful (avg=6.5, sd=0.7) to reuse objects in
the preview. Reusing objects can save time because accurate object
manipulation is time-consuming in VR [34] and reusing objects can
put those objects at the same location and rotation. One participant
also reported to prefer reusing to merging in conventional VCSs
such as Git because it allowed them to utilize part of the changes.

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

“I like it better than, say, like Git or Google Doc because you could pull
it [the preview] up and then take in just the pieces that you wanted,
versus like Git you have to kind of merge all the updates.” (P2a)

5.2 Communication and Awareness in
Collaboration Tasks

Overall, participants felt that their overall communication with
collaborators was natural (avg=6.4, sd=0.6) and enjoyed the col-
laboration in the task (avg=5.6, sd=1.3). Participants thought that
the portal (avg=6.3, sd=0.9) and the shared visualization (avg=6.4,
sd=0.8) with other users were very useful.

5.2.1 Portals allowed easy communication on ideas. Participants
found it easy to understand what their collaborators were doing
(avg=6.1, sd=0.8) and to communicate feedback with collaborators
(avg=6.4, sd=0.7) through the portal. Although we mentioned above
that previews were suitable for understanding holistic layout of
the foor plan, participants thought that being able to see the frst-
person view of their collaborators made it easy to understand their
collaborators activities based on their own experience. “I thought
the portal was pretty good to use because I could see exactly what
they were doing...and since I had the same experience too I knew what
they were doing and why they decided to do those things.” (P1a) They
thought it was easy to communicate feedback because they could
easily refer to items (avg=5.9, sd=1.4) through the portal. “It (the
portal) was especially good for, like, if I wanted to get a really close
view of something or if I wanted to make sure if it was the right item
or the right color.” (P2a) In addition, participants thought the design
of the portal can save the efort of leaving for other users’ branches.
“[With portals] you don’t have to step out from your room to actually
go to the second room, you can just be in your room, and just from
there you can see what is happening in the other room.” (P6b)

5.2.2 Shared history visualization provided common ground for
discussion. Participants generally applauded the ability to see a
larger scale HG laid out in the physical environment. “It is nice that
the structure of versions is larger when it is on the table. I can actually
see how many furniture inside that version and decide whether or not
to go there.” (P4a) Participants found it easy to refer to a specifc
version (avg=6, sd=0.8) or object (avg=6.4, sd=0.7) in the shared
history visualization. This consensus on versions and objects then
helped facilitate participants’ discussion on their design. “...if I
actually didn’t agree with my collaborator’s fnal design, like for
example version 5, but I see in version 3 there is something interesting.
I can say ‘Okay, actually I like what you did in version 3 here, can
we branch of of version 3 and explore something else here?’ and
the fact that you have this shared vision collectively, it gives that
opportunity to branch of of the design.” (P9b) However, the shared
history visualization could be confusing sometimes when the user
was unclear who was the sharer. “The shared visualization didn’t
communicate to me if I had control of it or not. If it said that I’m
observing [partner’s] visualization, I would know that it’s her thing
and I wouldn’t do anything.” (P4b)

6 DISCUSSION AND FUTURE WORK
Our results demonstrate that users were able to use VRGit for ver-
sion control in both individual and collaborative content creation in

VR. We found that VRGit ofered intuitive visualization and interac-
tion for understanding non-linear version history, creating branches
of design variants, and previewing and reusing design from difer-
ent versions in VR. In addition, VRGit facilitated communication
and awareness in collaboration with portals and a shared history vi-
sualization. Although the system was generally considered easy to
use and useful for most tasks, VRGit also introduced challenges of
navigating longer histories more efectively and workspace aware-
ness understanding sharing and control among collaborators. In
this section, we detail the design considerations and future direc-
tions of building VCSs for collaborative content creation in VR. We
also discuss the current limitations of our work.

6.1 Lowering the Efort for Using VCS in VR
As they are originated from managing source code among devel-
opers [74], existing VCSs could require advanced knowledge and
skills of both using the system (e.g., shell commands) and inter-
preting the visualization (e.g., diferences between two versions
and structures of non-linear version history). Content creation in
VR, however, is targeted on a diverse population including non-
technical users such as designers and customers/end-users [5, 40].
In our research, we aimed to reduce the barrier of entry to VCSs by
designing intuitive visualization and interaction of version history
in VR, and found that even people without prior programming ex-
perience were able to use VRGit to manage the versions history of
their work. This demonstrates the benefts of building graphical
representations in VR that end-users are familiar with for tracking
version history. This also aligns with the spirit of What-You-See-
Is-What-You-Get in immersive authoring research, where many
tools and techniques were explored to lower the foor for novices to
create content directly in VR [47, 80]. Future work may also draw
inspiration from past research that has investigated intuitive visu-
alization and interactions to lower the barrier for using VCS, such
as by leveraging people’s spatial abilities using the virtual body
resizing technique [41] to enable intuitive navigation of version
histories. In addition, VRGit only uses controllers as input, which
has limited capabilities, making it efortful for users to recall which
buttons to press. Future work might also draw inspiration from
past research that has investigated richer input modalities in VR

such as gestures [4] and cross-device interactions [23, 70] for more
precise control and lower mental or physical efort.

6.2 Providing Efcient Comparison and Fusion
of Design Variants

We found that VRGit enabled users to easily compare diferent ver-
sions through a combination of visualizing variants using branches,
highlighting changes in colors, and previewing versions in minia-
tures. This extends prior work on VCS for 3D scenes by seamlessly
providing the comparison in the content creation process without
explicit commands such as dif. Our study also suggests that the
design of reusing content in VRGit was helpful in quickly copy-
ing objects from diferent versions and fusing ideas of multiple
collaborators. This aligns with prior work on creativity support
where enabling easy exploration of possible creative solutions such
as mix-and-match is a key component [64]. This is diferent from

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

prior work on VCS that uses the merge command to combine the
whole scenes of two branches instead of part of the scene [18]. Both
approaches could become inefcient when users have to manually
deal with a large number of content that they do or do not want to
fuse (e.g., manually resolving conficts after merging). Therefore,
future work could explore more efcient ways of fusing multiple
design variants, such as providing suggestions based on other de-
sign variants during the creation process, or more efcient group
selection techniques to facilitate fusing.

6.3 Designing for Larger-scale Version History
VRGit introduces summarization techniques that can cluster oper-
ations and reduce the visual cluttering by clipping the HG based
on the constraints. This was sufcient for lab study tasks such
as designing the spatial layout of an apartment. However, the HG

can become complex and hard to navigate when creating more
complex 3D scenes. Future work could investigate techniques that
allow visualization and interaction with the HG at larger scales. For
instance, there are techniques that allow users to cluster operations
manually [50]. One can also consider employing more sophisticated
ways of automatic clustering operations or interactions, e.g., by
leveraging techniques in interactive summarization of videos [6, 7]
and 3D models [17, 19]. While the former is based on image analy-
sis and the latter is based on geometry analysis of single objects,
future work could extend this line of work by exploring interactive
summarization techniques based on content creation operations
clustering. To navigate a large scale HG, one possible solution is to
incorporate the metaphor of WIM again where the user can anchor
a coarser resolution of HG on the non-dominant hand and a higher
resolution of HG in the world space. The user can then navigate the
HG at large steps by manipulating the HG on the hand and navigate
at smaller steps by manipulating the HG in the world space.

6.4 Leveraging System Support for Richer
Workspace Awareness

Our results showed that various channels of workspace awareness
were helpful for a VCS to support fuid collaboration experiences.
While portals allowed users to understand their collaborators’ ac-
tivities and communicate ideas, when they are working in diferent
versions, participants still sometimes preferred using previews or
going directly to the collaborator’s version for communication.
This is partially because portals were only 2D video streams and
did not ofer the spatial context of the layout that the other collab-
orators were working on. In addition, users did not have control
over the viewing angle through the portal, which introduced fric-
tion when users were looking at their collaborator’s environment.
Future work could investigate ways to fuse diferent views of the
collaborators’ environment in order to support better workspace
awareness (e.g. [39]).

Another challenge we found in the user study is the awareness of
users’ control over the shared history visualization. For instance, in
VRGit, only the sharer had control over the shared history visualiza-
tion, but it is unclear to users in the immersive environment who is
controlling and who is not, thus resulting in less engagement by the
participants. On the other hand, introducing simultaneous control

could introduce potential conficts over the shared history visualiza-
tion. Future work should thus investigate ways to balance control
in a shared history visualization while maintaining consistency and
users’ awareness of the version history.

6.5 Integrating Version Control in the VR

Content Creation Process
Shneiderman suggests that rich history-keeping is an essential fea-
ture of creativity support tools [64], and more recently, Sterman
et al. [66] also suggest that version control for creative domains
should be designed based on the needs of creative processes as cre-
ative practitioners in these domains could prioritize diferent values
over efciency and fdelity as those in the software engineering
domain. In line with prior research, our study suggests that our
design of history visualization and interaction that is appropriate
for VR authoring can help users revert to prior versions, compare
and explore design variants, and communicate with collaborators.
Besides designing VCSs that can suit the needs of creative tasks,
our results also suggest that the design of VRGit can help shape
collaboration in content creation such as understanding collabo-
rators’ activities without leaving their workspace and sparking
design suggestions during discussion based on shared visualiza-
tion. Future researchers and designers should thus consider users’
creative and collaborative needs that are specifc to the workfow
of collaborative VR content creation when designing VCSs. For ex-
ample, future research could further explore a hybrid VCS that can
bridge diferent devices and platforms as many researchers have
explored cross-device and cross-platform development of VR and
Augmented Reality (AR) experiences [40, 65]. More specifcally, nu-
merous aspects of VR content creation might take place outside of
the immersive environments, from 3D modeling to software engi-
neering, and debugging. Future research could thus explore how to
integrate the design of VRGit into current version control practices
of the above aspects.

6.6 Limitations
Though our fndings showed that our VCS is useful for collaborative
content creation tasks in VR, our work has several limitations. First,
we ran an exploratory lab study of the system with teams of three
users for no more than two hours. The way that participants
performed the tasks in the lab setting could be diferent from that in
the real-world setting. It is also unclear how well it works for larger
collaboration teams, which might reveal additional challenges for
collaboration awareness and scalability. In addition, although we
did not observe any specifc novelty efect during the study, it is
possible that it played a role, and a longitudinal study would help us
understand how people would use VRGit in practice. A participant
response bias could also exist when the participants thought the
system was developed by the researchers [16].

Second, we mainly evaluated the usability and utility of VRGit in
the context of interior design. Future work could further evaluate
other parameters such as correctness, consistency, and scalability
and potentially compare VRGit with a control condition where users
are provided with the same tasks without using VRGit. It is also
worth investigating how diferent task contexts and populations

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

could afect the usage of VRGit. For example, future work could
evaluate the usage of VRGit in contexts such as game design and
architecture, and investigate how people’s relationships (e.g. friends,
colleagues) and skills (e.g. high VCS literacy but low VR literacy)
could afect their usage of VRGit.

Finally, our system was designed for synchronous collaboration
in VR. It is unclear how well the system can be extended to asynchro-
nous collaboration where multiple users are ofine but still need
to communicate and maintain awareness asynchronously. VRGit
was designed based on a limited set of content creation operations
that take efect on immersive 3D scenes, which could limit its uses.
Future work could look into how to extend it to support more oper-
ations on diferent granularities of 3D scenes. For example, it would
be useful to be able to store operations on vertices and meshes of a
3D model, which is common in tasks such as 3D modeling.

7 CONCLUSION
In this paper, we presented a new Version Control System (VRGit)
for collaborative content creation in VR. VRGit enables novel visu-
alization and interactions of History Graphs in VR that allows users
to easily view and navigate version history, create branches, pre-
view and reusing objects from multiple versions. Our system also
facilitates communication and awareness between collaborators
and the version history, whether users are working in the same
version or diferent versions. Through an exploratory lab study, we
found that our system enabled users to easily manage non-linear
version histories, communicate with collaborators, and maintain
workspace awareness in VR. We provide insight for future research
and design around building VCSs for collaboration in VR, including
techniques for scaling up to long version history and providing
more channels of workspace awareness.

ACKNOWLEDGMENTS
We would like to thank Yan Chen for providing early suggestions
that helped shape our research direction. We are also grateful to
Zach Behrman, Yufei Quan, and Yifei Wang for their help in system
implementation, and Shwetha Rajaram for her feedback on our
paper submission. Finally, we would like to thank our participants
and our reviewers for their time and efort.

REFERENCES
[1] Adobe. 2021. Adobe Medium. https://www.adobe.com/products/medium.html
[2] Judith Amores, Xavier Benavides, and Pattie Maes. 2015. Showme: A remote

collaboration system that supports immersive gestural communication. In Pro-
ceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems. 1343–1348.

[3] Apache. 2022. Apache Subversion. https://subversion.apache.org/
[4] Rahul Arora, Rubaiat Habib Kazi, Danny M Kaufman, Wilmot Li, and Karan Singh.

2019. Magicalhands: Mid-air hand gestures for animating in vr. In Proceedings
of the 32nd annual ACM symposium on user interface software and technology.
463–477.

[5] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K
Chilana. 2020. Creating augmented and virtual reality applications: Current
practices, challenges, and opportunities. In Proceedings of the 2020 CHI conference
on human factors in computing systems. 1–13.

[6] Jackie Assa, Yaron Caspi, and Daniel Cohen-Or. 2005. Action synopsis: pose
selection and illustration. ACM Transactions on Graphics (TOG) 24, 3 (2005),
667–676.

[7] Connelly Barnes, Dan B Goldman, Eli Shechtman, and Adam Finkelstein. 2010.
Video tapestries with continuous temporal zoom. In ACM SIGGRAPH 2010 papers.
1–9.

[8] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. 2016. Point
& teleport locomotion technique for virtual reality. In Proceedings of the 2016
annual symposium on computer-human interaction in play. 205–216.

[9] Claudio Calabrese, Gabriele Salvati, Marco Tarini, and Fabio Pellacini. 2016.
cSculpt: a system for collaborative sculpting. ACM Transactions on Graphics
(TOG) 35, 4 (2016), 1–8.

[10] Edoardo Carra and Fabio Pellacini. 2019. SceneGit: a practical system for difng
and merging 3D environments. ACM Transactions on Graphics (TOG) 38, 6 (2019),
1–15.

[11] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen
Koltun. 2011. Probabilistic reasoning for assembly-based 3D modeling. In ACM
SIGGRAPH 2011 papers. 1–10.

[12] Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-driven suggestions for
creativity support in 3D modeling. In ACM SIGGRAPH Asia 2010 papers. 1–10.

[13] Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear revision
control for images. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1–10.

[14] Herbert H Clark and Susan E Brennan. 1991. Grounding in communication.
(1991).

[15] Robin George Collingwood. 1958. The principles of art. Vol. 11. Oxford University
Press.

[16] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. 2012. " Yours is better!" participant response bias in HCI. In Proceedings of
the sigchi conference on human factors in computing systems. 1321–1330.

[17] Jonathan D Denning, William B Kerr, and Fabio Pellacini. 2011. Meshfow:
interactive visualization of mesh construction sequences. In ACM SIGGRAPH
2011 papers. 1–8.

[18] Jonathan D Denning and Fabio Pellacini. 2013. Meshgit: Difng and merging
meshes for polygonal modeling. ACM Transactions on Graphics (TOG) 32, 4 (2013),
1–10.

[19] Jonathan D Denning, Valentina Tibaldo, and Fabio Pellacini. 2015. 3dfow: Contin-
uous summarization of mesh editing workfows. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 1–9.

[20] Jozef Doboš and Anthony Steed. 2012. 3D Dif: an interactive approach to mesh
diferencing and confict resolution. In SIGGRAPH Asia 2012 Technical Briefs.
1–4.

[21] Jozef Doboš and Anthony Steed. 2012. 3D revision control framework. In Pro-
ceedings of the 17th International Conference on 3D Web Technology. 121–129.

[22] Paul Dourish. 1995. The parting of the ways: Divergence, data management
and collaborative work. In Proceedings of the Fourth European Conference on
Computer-Supported Cooperative Work ECSCW’95. Springer, 215–230.

[23] Tobias Drey, Jan Gugenheimer, Julian Karlbauer, Maximilian Milo, and Enrico
Rukzio. 2020. Vrsketchin: Exploring the design space of pen and tablet interaction
for 3d sketching in virtual reality. In Proceedings of the 2020 CHI conference on
human factors in computing systems. 1–14.

[24] Thierry Duval, Thi Thuong Huyen Nguyen, Cédric Fleury, Alain Chaufaut,
Georges Dumont, and Valérie Gouranton. 2014. Improving awareness for 3D
virtual collaboration by embedding the features of users’ physical environments
and by augmenting interaction tools with cognitive feedback cues. Journal on
Multimodal User Interfaces 8, 2 (2014), 187–197.

[25] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani, and
George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual programming
for authoring and understanding intelligent environments. In Proceedings of the
43rd Graphics Interface Conference. 156–162.

[26] Mike Fraser, Steve Benford, Jon Hindmarsh, and Christian Heath. 1999. Sup-
porting awareness and interaction through collaborative virtual interfaces. In
Proceedings of the 12th annual ACM symposium on User interface software and
technology. 27–36.

[27] Peter Frost and Peter Warren. 2000. Virtual reality used in a collaborative archi-
tectural design process. In 2000 IEEE Conference on Information Visualization. An
International Conference on Computer Visualization and Graphics. IEEE, 568–573.

[28] William W Gaver, Abigail Sellen, Christian Heath, and Paul Luf. 1993. One is
not enough: Multiple views in a media space. In Proceedings of the INTERACT’93
and CHI’93 conference on Human factors in computing systems. 335–341.

[29] Git. 2022. Git. https://git-scm.com/
[30] Google. 2016. Google Tilt Brush. https://www.tiltbrush.com/
[31] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,

exploration, and playback of document workfow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology. 143–152.

[32] Carl Gutwin and Saul Greenberg. 2002. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative Work
(CSCW) 11, 3 (2002), 411–446.

[33] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
2008. Design as exploration: creating interface alternatives through parallel
authoring and runtime tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology. 91–100.

[34] Devamardeep Hayatpur, Seongkook Heo, Haijun Xia, Wolfgang Stuerzlinger, and
Daniel Wigdor. 2019. Plane, ray, and point: Enabling precise spatial manipulations
with shape constraints. In Proceedings of the 32nd annual ACM symposium on
user interface software and technology. 1185–1195.

https://www.adobe.com/products/medium.html
https://subversion.apache.org/
https://git-scm.com/
https://www.tiltbrush.com/

VRGit: A Version Control System for Collaborative Content Creation in Virtual Reality CHI ’23, April 23–28, 2023, Hamburg, Germany

[35] Zhenyi He, Ruofei Du, and Ken Perlin. 2020. Collabovr: A reconfgurable frame-
work for creative collaboration in virtual reality. In 2020 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR). IEEE, 542–554.

[36] Hikaru Ibayashi, Yuta Sugiura, Daisuke Sakamoto, Natsuki Miyata, Mitsunori
Tada, Takashi Okuma, Takeshi Kurata, Masaaki Mochimaru, and Takeo Igarashi.
2015. Dollhouse vr: a multi-view, multi-user collaborative design workspace with
vr technology. In SIGGRAPH Asia 2015 Emerging Technologies. 1–2.

[37] Claudia-Lavinia Ignat, Stavroula Papadopoulou, Gérald Oster, and Moira C Norrie.
2008. Providing awareness in multi-synchronous collaboration without compro-
mising privacy. In Proceedings of the 2008 ACM conference on Computer supported
cooperative work. 659–668.

[38] Scott R Klemmer, Michael Thomsen, Ethan Phelps-Goodman, Robert Lee, and
James A Landay. 2002. Where do web sites come from? Capturing and interacting
with design history. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 1–8.

[39] Ryohei Komiyama, Takashi Miyaki, and Jun Rekimoto. 2017. JackIn space: de-
signing a seamless transition between frst and third person view for efective
telepresence collaborations. In Proceedings of the 8th Augmented Human Interna-
tional Conference. 1–9.

[40] Veronika Krauß, Alexander Boden, Leif Oppermann, and René Reiners. 2021.
Current practices, challenges, and design implications for collaborative AR/VR
application development. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. 1–15.

[41] Andrey Krekhov, Sebastian Cmentowski, Katharina Emmerich, Maic Masuch,
and Jens Krüger. 2018. GulliVR: A walking-oriented technique for navigation in
virtual reality games based on virtual body resizing. In Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play. 243–256.

[42] André Kunert, Alexander Kulik, Stephan Beck, and Bernd Froehlich. 2014. Pho-
toportals: shared references in space and time. In Proceedings of the 17th ACM
conference on Computer supported cooperative work & social computing. 1388–
1399.

[43] David Kurlander and Steven Feiner. 1988. Editable graphical histories.. In VL.
Citeseer, 127–134.

[44] Jingyi Li, Wilmot Li, Sean Follmer, and Maneesh Agrawala. 2021. Automated
Accessory Rigs for Layered 2D Character Illustrations. In The 34th Annual ACM
Symposium on User Interface Software and Technology. 1100–1108.

[45] Klemen Lilija, Henning Pohl, and Kasper Hornbæk. 2020. Who Put That There?
Temporal Navigation of Spatial Recordings by Direct Manipulation. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–11.

[46] Jock D Mackinlay, Stuart K Card, and George G Robertson. 1990. Rapid controlled
movement through a virtual 3D workspace. In Proceedings of the 17th annual
conference on Computer graphics and interactive techniques. 171–176.

[47] Mark Mine. 1995. ISAAC: A virtual environment tool for the interactive con-
struction of virtual worlds. (1995).

[48] Mark Mine, Arun Yoganandan, and Dane Cofey. 2014. Making VR work: building
a real-world immersive modeling application in the virtual world. In Proceedings
of the 2nd ACM symposium on Spatial user interaction. 80–89.

[49] Brad A Myers, Ashley Lai, Tam Minh Le, YoungSeok Yoon, Andrew Faulring, and
Joel Brandt. 2015. Selective undo support for painting applications. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
4227–4236.

[50] Toshio Nakamura and Takeo Igarashi. 2008. An application-independent system
for visualizing user operation history. In Proceedings of the 21st annual ACM
symposium on User interface software and technology. 23–32.

[51] Cuong Nguyen, Stephen DiVerdi, Aaron Hertzmann, and Feng Liu. 2017. CollaVR:
collaborative in-headset review for VR video. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 267–277.

[52] Ohan Oda, Carmine Elvezio, Mengu Sukan, Steven Feiner, and Barbara Tversky.
2015. Virtual replicas for remote assistance in virtual and augmented reality.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. 405–415.

[53] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh
Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Ming-
song Dou, et al. 2016. Holoportation: Virtual 3d teleportation in real-time. In
Proceedings of the 29th annual symposium on user interface software and technology.
741–754.

[54] Yun Suen Pai, Benjamin I Outram, Benjamin Tag, Megumi Isogai, Daisuke Ochi,
Hideaki Kimata, and Kai Kunze. 2017. CleaVR: collaborative layout evaluation
and assessment in virtual reality. In ACM SIGGRAPH 2017 Posters. 1–2.

[55] Navinchandra K Patel, Simon P Campion, and Terrence Fernando. 2002. Eval-
uating the use of virtual reality as a tool for briefng clients in architecture. In
Proceedings Sixth International Conference on Information Visualisation. IEEE,
657–663.

[56] Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek, and Andrew Wilson. 2016.
Room2room: Enabling life-size telepresence in a projected augmented reality
environment. In Proceedings of the 19th ACM conference on computer-supported
cooperative work & social computing. 1716–1725.

[57] Jefrey S Pierce, Brian C Stearns, and Randy Pausch. 1999. Voodoo dolls: seamless
interaction at multiple scales in virtual environments. In Proceedings of the 1999
symposium on Interactive 3D graphics. 141–145.

[58] Thammathip Piumsomboon, Gun A Lee, Jonathon D Hart, Barrett Ens, Robert W
Lindeman, Bruce H Thomas, and Mark Billinghurst. 2018. Mini-me: An adaptive
avatar for mixed reality remote collaboration. In Proceedings of the 2018 CHI
conference on human factors in computing systems. 1–13.

[59] Thammathip Piumsomboon, Youngho Lee, Gun Lee, and Mark Billinghurst. 2017.
CoVAR: a collaborative virtual and augmented reality system for remote collabo-
ration. In SIGGRAPH Asia 2017 Emerging Technologies. 1–2.

[60] Kevin Ponto, Ross Tredinnick, Aaron Bartholomew, Carrie Roy, Dan Szafr, Daniel
Greenheck, and Joe Kohlmann. 2013. SculptUp: A rapid, immersive 3D modeling
environment. In 2013 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 199–
200.

[61] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996.
The go-go interaction technique: non-linear mapping for direct manipulation in
VR. In Proceedings of the 9th annual ACM symposium on User interface software
and technology. 79–80.

[62] Jun Rekimoto. 1999. Time-machine computing: a time-centric approach for the
information environment. In Proceedings of the 12th annual ACM symposium on
User interface software and technology. 45–54.

[63] Gabriele Salvati, Christian Santoni, Valentina Tibaldo, and Fabio Pellacini. 2015.
Meshhisto: Collaborative modeling by sharing and retargeting editing histories.
ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–10.

[64] Ben Shneiderman. 2007. Creativity support tools: Accelerating discovery and
innovation. Commun. ACM 50, 12 (2007), 20–32.

[65] Maximilian Speicher, Brian D Hall, Ao Yu, Bowen Zhang, Haihua Zhang, Janet
Nebeling, and Michael Nebeling. 2018. XD-AR: challenges and opportunities in
cross-device augmented reality application development. Proceedings of the ACM
on Human-Computer Interaction 2, EICS (2018), 1–24.

[66] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative
Version Control. In CM Conference on Computer-Supported Cooperative Work and
Social Computing.

[67] Richard Stoakley, Matthew J Conway, and Randy Pausch. 1995. Virtual reality on
a WIM: interactive worlds in miniature. In Proceedings of the SIGCHI conference
on Human factors in computing systems. 265–272.

[68] Kaj Sunesson, Carl Martin Allwood, Dan Paulin, Ilona Heldal, Mattias Roupé,
Mikael Johansson, and Börje Westerdahl. 2008. Virtual reality as a new tool in
the city planning process. Tsinghua Science & Technology 13 (2008), 255–260.

[69] Minhyuk Sung, Hao Su, Vladimir G Kim, Siddhartha Chaudhuri, and Leonidas
Guibas. 2017. ComplementMe: Weakly-supervised component suggestions for
3D modeling. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–12.

[70] Hemant Bhaskar Surale, Aakar Gupta, Mark Hancock, and Daniel Vogel. 2019.
Tabletinvr: Exploring the design space for using a multi-touch tablet in virtual
reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–13.

[71] James Tam and Saul Greenberg. 2004. A framework for asynchronous change
awareness in collaboratively-constructed documents. In International Conference
on Collaboration and Technology. Springer, 67–83.

[72] Michael Terry and Elizabeth D Mynatt. 2002. Recognizing creative needs in user
interface design. In Proceedings of the 4th Conference on Creativity & Cognition.
38–44.

[73] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjoern
Hartmann, and Tovi Grossman. 2019. Loki: Facilitating remote instruction of
physical tasks using bi-directional mixed-reality telepresence. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
161–174.

[74] Walter F Tichy. 1985. RCS—A system for version control. Software: Practice and
Experience 15, 7 (1985), 637–654.

[75] Unreal. 2022. Unreal Editor VR Mode. https://docs.unrealengine.com/5.0/en-
US/vr-mode-in-unreal-editor/

[76] Nelson Wong and Carl Gutwin. 2010. Where are you pointing? The accuracy
of deictic pointing in CVEs. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1029–1038.

[77] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
oriented drawing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 4610–4621.

[78] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Spacetime:
Enabling fuid individual and collaborative editing in virtual reality. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and Technology.
853–866.

[79] Enes Yigitbas, Jonas Klauke, Sebastian Gottschalk, and Gregor Engels. 2021.
VREUD-an end-user development tool to simplify the creation of interactive
VR scenes. In 2021 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 1–10.

[80] Lei Zhang and Steve Oney. 2020. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 342–353.

https://docs.unrealengine.com/5.0/en-US/vr-mode-in-unreal-editor/
https://docs.unrealengine.com/5.0/en-US/vr-mode-in-unreal-editor/

CHI ’23, April 23–28, 2023, Hamburg, Germany Lei Zhang, Ashutosh Agrawal, Steve Oney, and Anhong Guo

A STUDY SURVEYS

A.1 Pre-task Survey
(1) What is your self-rated experience level in using VR? Select

only one option below.
• Beginner
• Intermediate
• Expert
• Other:_______

(2) What have you used VR for in the past? Check all that apply.
□ Gaming and Entertainment
□ Art and Design
□ Architecture
□ Education
□ VR Development
□ VR Product Design
□ VR Research
□ Healthcare
□ Other:_______

(3) Have you used any of the following tools/software to track
multiple versions of your work? Check all that apply.
□ Version Control System (e.g., Git, SVN)
□ Adobe Creative Suite (e.g., Photoshop, Illustrator)
□ Figma
□ Google Doc
□ Other:_______

A.2 Survey Part I
Participants answered the following questions using 7-point likert
scale (i.e., “1” means strongly disagree and “7” means strongly
agree).

Usability and Utility of Features
(1) I found it easy to create a branch of the history.
(2) I think it would be useful to create multiple branches.
(3) I found it easy to navigate and enter diferent versions.
(4) I think it would be useful to navigate and enter diferent

versions.
(5) I found it easy to see the preview (i.e. a larger miniature) of

a version.
(6) I think it would be useful to see the preview (i.e. a larger

miniature) of a version.
(7) I found it easy to merge objects from one version to another.
(8) I think it would be useful to merge objects from one version

to another.
System suitability

(1) By looking at the history visualization, I can see the changes
between two consecutive versions.

(2) By looking at the history visualization, I can track the evolu-
tion of my design across various versions.

(3) By looking at the history visualization, I can refer to other
versions to inform my current design.

A.3 Survey Part II
Participants answered the following questions using 7-point likert
scale (i.e., “1” means strongly disagree and “7” means strongly
agree).

Communication and Awareness across Diferent Versions
(using Portals)

(1) I found it easy to see in which version my collaborator was
located through the history visualization.

(2) I found it easy to understand my collaborator’s work progress
through the history visualization.

(3) I found it easy to understand my collaborator’s design through
the portal.

(4) I found it easy to share my design with my collaborators
through the portal.

(5) It was easy to understand which items my collaborator was
referring to through the portal.

(6) I found it easy to understand what my collaborator was doing
through the portal.

(7) I found it easy to communicate feedback with my collabora-
tors through the portal.

(8) I think the portal with another user would be useful.
Communication and Awareness in the Same Version (using

Shared Visualization)
(1) I was aware of the presence of my collaborators when we

are in the same version.
(2) It was easy to understand my collaborator’s actions when

they are in the same version as me.
(3) It was easy to collaboratively go to a diferent version using

the shared visualization.
(4) During the group discussion, it was easy for me to refer to a

specifc version in the shared visualization.
(5) During the group discussion, it was easy for me to refer to a

specifc object in the scene.
(6) During the group discussion, it was easy to understand which

version my collaborator was referring to in the shared visu-
alization.

(7) During the group discussion, it was easy to understand which
object my collaborator was referring to in the scene.

(8) It was easy to merge objects from another version using the
shared visualization.

(9) During the group discussion, I think the shared visualization
would be useful.

General Experience

(1) My overall communication with my collaborators felt natu-
ral.

(2) To what extent did you experience that you and your partner
collaborated?

(3) Think of some previous time (before today) when you en-
joyed collaborating with someone. To what extent did you
enjoy collaborating with your partner in today’s task?

(4) To what extent would you, on another occasion, like to carry
out a similar task with your partner?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Version Control Systems for 3D Scenes
	2.2 Graphical History Visualization
	2.3 Collaborative Virtual Environments
	2.4 VR Visualization and Interaction Techniques

	3 VRGit
	3.1 Immersive Authoring Environment
	3.2 Version Control System
	3.3 Collaboration in VRGit
	3.4 System Implementation

	4 Evaluation
	4.1 Participants
	4.2 Procedure
	4.3 Task

	5 Results
	5.1 Usability and Utility of VRGit
	5.2 Communication and Awareness in Collaboration Tasks

	6 Discussion and Future Work
	6.1 Lowering the Effort for Using VCS in VR
	6.2 Providing Efficient Comparison and Fusion of Design Variants
	6.3 Designing for Larger-scale Version History
	6.4 Leveraging System Support for Richer Workspace Awareness
	6.5 Integrating Version Control in the VR Content Creation Process
	6.6 Limitations

	7 Conclusion
	Acknowledgments
	References
	A Study Surveys
	A.1 Pre-task Survey
	A.2 Survey Part I
	A.3 Survey Part II

