
X-Ray: Screenshot Accessibility via Embedded Metadata

Sujeath Pareddy, Anhong Guo, Jeffrey P. Bigham
Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA

sujeath@cmu.edu, {anhongg, jbigham}@cs.cmu.edu

ABSTRACT
Screenshots are frequently shared on social media, via per­
sonal communications, and in academic papers. Unfortunately,
existing screenshot tools strip away semantics useful for mak­
ing the content accessible, leaving only pixels. For example, a
screenshot of a table removes the structural information use­
ful for conveying it. We quantify the scale of the problem
via a study of academic papers, showing that a large number
of images included in academic papers are screenshots, and
validate this via qualitative interviews with researchers about
their figure generation process. We then introduce X-Ray, a
system that captures and embeds the semantics of the under­
lying content into images. Using the X-Ray screenshot tool,
semantic information is captured and stored in the Exif data of
the resulting image, allowing it to “tag along” as the image is
shared and reposted. We demonstrate that our approach retains
accessibility for screen reader users via a study with five blind
participants. More generally, our approach suggests a method
for embedding accessibility metadata into otherwise inacces­
sible formats, enabling them to retain the more accessible
representations that are present at capture time.

Author Keywords
Accessibility; alt text; screen readers; vision impairment;
runtime modification; large-scale analysis; pdf; screenshot.

CCS Concepts
•Human-centered computing → Interactive systems and
tools; Accessibility technologies;

INTRODUCTION
Screenshots are largely inaccessible to screen reader users.
Currently, the only information available to screen reader users
comes from alternative text (alt-text). While useful, this cre­
ates a disparity between sighted and visually impaired people.
A screenshot is visually similar to the underlying interface
and can stand-in as long as no interactivity is desired. Sighted
users can inspect the contents of the image, read text and even
determine the state of GUI controls. For screen reader users,
it is little more than a black box.

Screenshots are convenient to take on modern operating sys­
tems. Windows, Mac OS, Android and iOS allow easy access
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ASSETS ’19, October 28-30, 2019, Pittsburgh, PA, USA

© 2019 Association of Computing Machinery.

ACM ISBN 978-1-4503-6676-2/19/10 ...$15.00.

https://doi.org/10.1145/3308561.3353808

Figure 1. An “augmented” screenshot taken with the X-Ray capture tool
(left) preserves the underlying semantics, allowing a screen reader user
to interact with it as if they are using the underlying interface (right).

to screenshot functionality. Recent iterations of Windows and
iOS show a popup overlay for sharing and markup when a
screenshot is taken. This ubiquity suggests that screenshots
have significant utility to the end user. Indeed, research shows
that a significant fraction of images on Twitter are screenshots
[14, 18]. We contribute to this line of research by analyzing
the incidence of screenshots in 2,272 papers taken from HCI
conference proceedings and arXiv Computer Science (CS)
papers published in the year of 2018. Overall, we found on av­
erage 2.70 tables and 2.49 plots per paper. Interestingly, ~15%
of tables in our sample were images that contained tables.

To better understand the figure generation process, we per­
formed semi-structured interviews with 5 CS researchers in
our institution. Researchers walked us through their process
of making each figure in a recently published work. Our in­
terviews validated our earlier findings about screenshots of ta­
bles. We found taking screenshots to be a significant part of the
workflow. Many figures required moving between one or more
GUI applications where they may be scaled, cropped, post-
processed, composited or have other operations performed on
them before placed in the paper. These steps strip away the
semantics of the underlying content that is useful for acces­
sibility. This motivated our idea to place metadata inside the
image, so that the underlying semantics are preserved at every
step along with the visual pixels.

In this paper, we introduce X-Ray, a system that captures and
embeds the semantics of the underlying content into images.
Using the X-Ray screenshot tool, semantic information is
captured and stored in the Exif data of the resulting image,
allowing it to “tag along” as the image is shared and reposted.

https://doi.org/10.1145/3308561.3353808
mailto:Permissions@acm.org
mailto:jbigham}@cs.cmu.edu
mailto:sujeath@cmu.edu

Exif is a standard metadata format that is normally used to
store information such as camera model and geo-tags. Unlike
photos taken with a physical camera, screenshots are images
of a GUI which may have a machine readable representation.
This is used by screen readers to navigate the interface, for au­
tomated UI testing and for web crawling. This representation
can be captured when a screenshot is taken, and embedded
inside the metadata fields of the image.

When the screen reader user encounters such an augmented
image, the metadata can be extracted and the hierarchical
structure can be mounted with its root in place of the image.
This allows screen readers to navigate the virtual hierarchy.
Users can use the same screen reader gestures and shortcuts
they would normally use. Alternately, steganography could be
used to embed information directly into the pixels themselves.
Metadata could also be a separate file, similar to subtitle files
for videos. Unlike reverse engineering approaches [8, 11, 12],
our method has access to the ground truth of the underlying
interface, allowing it to be robust. Alt-text that already exists
in the interface is preserved, along with state information such
as a particular element being selected.

We demonstrate that our approach retains accessibility for
screen reader users via a user study with five blind partici­
pants, which is reasonable since the captured semantics are
preserved and presented in the same way as in the original
interface. More generally, our approach suggests a method
for embedding accessibility metadata into otherwise inacces­
sible formats, enabling them to retain the more accessible
representations that are present at capture time.

RELATED WORK
Our work is related to prior work on (i) alt-text, (ii) reverse
engineering user interfaces, and (iii) analysis of accessibility.

Alternative Text
Many prior systems have attempted to obtain missing alt-text
to increase their searchability and accessibility. Von Anh et al.
[22] use an online game to provide alt-text for images. WebIn­
sight [2] provides alt-text from a variety of sources, including
Optical Character Recognition (OCR) and human labelling.
While human provided alt-text can be very expressive and
scalable, it can be expensive, potentially inaccurate and raise
privacy concerns.

Salisbury et al. [21] explore the experiences of users with
crowd generated captions. Their research explores how the alt­
text generation process can be a conversation rather than a one
off API call. This enables users to ask clarifying questions and
request more detail. Our approach provides the raw interface
itself and allows users to navigate and make sense of the
interface without external support.

Wu et al. [23] automatically provide image captioning for
images on the Facebook news feed. They report the results of
a randomized control study with 9000 visually impaired users.
Caption Crawler [16] provides alt-text by searching the web
for instances of the same image that do have it. This highlights
an important factor; alt-text may be available, but is not always
copied along with the image. This motivates our approach of
embedding the information inside the image itself.

AIMS [19] uses steganography to embed alt-text inside the
pixels of images. Steganography can transmit information
more robustly than Exif metadata, which may be stripped by
services for privacy reasons. Our metadata can also use this
method for transmission. However, embedding metadata in
Exif does not degrade the quality of the image, and it can be
efficiently and reliably extracted. It is also unclear if their
method can survive image compression and post-processing,
which is common on social media and in academic publica­
tions. Further, this metadata may be privacy sensitive, and the
ability to easily strip it away is desirable.

Unlike alt-text, our system allows users to interactively nav­
igate the hierarchy as if it were the original interface. This
richer structured alternative to the image results naturally from
our capture method, yet may more generally represent an alter­
native to alt-text useful for enabling access to complex content
that is difficult to describe with text alone.

Reverse Engineering of Interfaces
There is a significant body of work on recovering GUIs from
screenshots [8] and videos [17]. Dixon et al. [11, 12] re­
verse engineer the state and behavior of user interface widgets
using only pixel level information. While promising, these
approaches may be brittle and may require humans to refine
the output. Furthermore, not all visually identical interfaces
behave the same way when interpreted as a screen reader.
Our approach preserves the original designer’s intent. Ele­
ments are visited in the same order as in the original interface.
Sometimes, developers create invisible elements that provide
shortcuts and options, allowing screen reader users to use
better strategies to navigate them [3], which our approach pre­
serves. Of course, if the original interface was inaccessible,
then X-Ray cannot help.

Interaction Proxies [24] is a strategy to improve mobile ac­
cessibility with accessible screen overlays. For example, an
inaccessible image can be replaced with an accessible text
overlay. Similarly, X-Ray replaces inaccessible screenshots
with the original accessible virtual view hierarchy.

Engel et al. [13] explored a process and supporting tools
to make static HTML versions of desktop GUIs. In their
process, controls (e.g., buttons, checkboxes) are converted into
HTML analogues. The primary goal of this work was to create
screenshots for use in accessible tutorials. In contrast, our
approach directly extracts the underlying UI structure when
the screenshot is taken, and does not depend on the existence
of an equivalent HTML control. As long as the control is
accessible, its static behavior can be stored and reproduced.

Analysis of Accessibility
Rico [9] and Erica [10] are large scale repositories of Android
UI screens, providing access to both screenshots and GUI
metadata. Ross et al. [20] study the incidence of unlabelled
buttons in Android apps. Brady et al. investigate the acces­
sibility of HCI papers [4] and interview researchers on their
experience of making papers accessible.

Bennet et al. [1] investigate social media practices among
blind teens. They find that screenshots were used to overcome
the ephemerality present on platforms such as Snapchat. Users

Selected Count Plot Raw tbl Img tbl Bad Table Photo Illustration GUI Img text Hybrid Not sure
ASSETS 31 28.64% 29.61% 0.97% 3.17% 22.82% 9.71% 5.83% 0.0% 2.43% 0.00%
CHI 665 22.51% 21.11% 3.01% 12.49% 17.84% 19.24% 10.07% 1.01% 4.82% 0.40%
DIS 110 9.53% 10.94% 2.82% 20.51% 37.41% 24.71% 7.65% 0.82% 6.00% 0.12%
UIST 80 20.61% 8.52% 3.26% 27.68% 19.77% 24.40% 11.99% 0.53% 9.57% 1.37%
CSCW 184 24.19% 36.04% 3.08% 7.88% 6.82% 12.82% 14.04% 0.49% 2.19% 0.32%
IMWUT 202 42.76% 22.20% 1.78% 7.43% 7.48% 18.01% 2.49% 0.06% 4.93% 0.30%
arXiv 1,000 27.66% 30.88% 6.79% 18.03% 4.97% 23.96% 1.14% 0.45% 3.75% 0.40%
Summary 2,272 27.60% 25.47% 4.43% 14.81% 10.88% 21.06% 5.16% 0.54% 0.41% 4.46%

Table 1. Analysis of academic proceedings; the percentage of tables that are images are reported in column ‘Bad Table.’ Overall, 14.81% of tables in
our sample were screenshots of tables, signifying the seriousness of the problem.

Category Examples

Plot Bar chart, histogram, etc.
Raw Tbl Table whose text can be selected
Img Tbl Screenshot of a table (text cannot be selected)
Photo Photo of real world object
Illustration Flow charts, system diagrams, clip art, etc.
GUI Screenshot of software interfaces
Img text Screenshot of text
Hybrid More than one categories in a single image
Not sure Others

Table 2. Coding manual for our academic proceeding analysis to under­
stand the incidence of screenshots in academic papers.

would snapshot an image that is about to disappear and then
view it later with assistive technology such as magnification.
Gleason et al. [14] estimate that 9.7% of human uploaded
images on Twitter are screenshots. Further, they report that
users wished for descriptions longer than the 420 character
limit imposed by Twitter at that time. Morris et al. [18] also
analyse tweets and report interesting uses of screenshots, such
as embedding text in images to circumvent the character limit.

ACADEMIC PROCEEDINGS ANALYSIS
To better understand the incidence of screenshots in academic
papers, we analyzed 2,272 papers taken from HCI conference
proceedings and ArXiv CS papers published in 2018 (Table
1). We manually downloaded proceedings from ACM Digi­
tal Library and from ArXiv using through their official bulk
download mechanism. We randomly selected 1,000 papers
that had Computer Science as their primary category. Using
the coding manual in Table 2, an in-house annotator labelled
the figures and tables in all the PDFs. Results are shown in
Table 1. Specifically, the fraction of tables that are actually
images is displayed in Bad Table column.

Overall, we found that there were 2.70 tables and 2.49 plots
per paper on average. Interestingly, 14.81% of tables in our
sample were actually screenshots of tables, signifying the se­
riousness of the problem. We found much variation in the
fraction of such “bad tables” across conferences (only 3.17%
in ASSETS, and 27.68% in UIST being the worst). Further­
more, even though bad tables are the most obvious problems,
plots, illustrations, GUI screenshots, images containing just
text, and hybrid figures – representing 63.24% of all figures
and tables – are all constructed using mobile and desktop GUI

applications. The semantics and structural information of the
underlying content are lost, which is useful for accessibility.

INTERVIEW STUDY WITH RESEARCHERS
To better understand the figure and table design process be­
yond our quantitative analysis, we performed semi-structured
interviews with 5 researchers (2F, 3M) from our institution.
Researchers were from a diverse range of fields including
Interaction Techniques, Fabrication, Natural Language Pro­
cessing, User Experience and Machine Learning. We began by
asking them to give an overview of their research and where
they generally publish. We then asked them to describe their
paper writing process with a focus on figures and tables from
their recent work. We went over each figure / table and dis­
cussed their workflow. The interviews were audio recorded
and results were analyzed using thematic analysis [15]. Two
major themes emerged which we summarize below.

Screenshots are simply convenient
When asked which tool was used to generate a plot in his
paper, R1 said, “from Excel, we actually took a screenshot,
from Excel there is a way to export it as a figure, but I just took
a screenshot. We take screenshots a lot because it is easier but
it depends on whether it is a high res screenshot or not.” Some
tools offered alternatives preferable to screenshots. When
probed if a particular image from their paper was a screenshot,
R1 said, “No, that’s from Keynote, we just exported as image,
it’s higher quality.” When asked why they could not do the
same in Excel, R1 said, “Because it gave me weird spacings,
you can’t save the entire workbook as an image, just one chart
at a time or the entire workbook.” R5 were not aware that
Keynote had this functionality. R2 reported, “this image was
done in a screenshot with Keynote and you can see it’s a little
blurred.” R4 highlighted how screenshots are used for editing
images. R4 needed to increase the font size in a figure obtained
from someone else. She said, “that’s taken directly from the
documentation. I used a really really bad way ... created a
cover over the original text and wrote the same text in a bigger
font on the top (and then took a screenshot).”

Researchers pick tools based on several factors
Researchers reported taking great pains to ensure that their
tables were aesthetically pleasing, and making one figure often
involved several tools. R1 reported taking screenshots of
visualization tools built in Processing, arranging them in a
grid in Keynote and then exporting to Photoshop for finishing
touches before inserting into Word.

Window

Grid

Item

Icon

Label

Item

Icon

Label

View Hierarchy

Pixel information

Compress & Embed Window

Image

Window

Grid

Virtual mount

Render

X-Ray capture X-Ray image reader

Screenshot

JPEG

EXIF

Render

Shared or reposted

Figure 2. X-Ray is a system that embeds metadata into the image itself at capture time, allowing it to “tag along” as the image is shared. Using the
X-Ray screenshot tool, semantic information is captured and stored in the Exif data of the screenshot. The X-Ray Image Viewer then allows screen
reader users to access the screenshots as if they are using the underlying interface.

Researchers reported making trade offs between the quality of
figures based on the time left before their deadlines. R1 said,
“I originally made the plot in matplotlib, we had to rerun some
data at the last minute, and I just ended up making this one in
Excel.” R5 reported, “the ideal way to do it (export) would be
PDF, but if I am in a time crunch then I’ll just take a screenshot
of it.” R2 reported how his desire for better quality figures
sometimes conflicted with his collaborators’ choice of tools.
He said, “If it was just me I would use (Adobe) Illustrator, but
when I delegate tasks to someone, I cannot control what tools
they use. I ended up using draw.io for this figure.”

TECHNICAL IMPLEMENTATION
Our study highlights the importance of convenience to the
researcher and the complexity of their workflows. We aim
to provide a seamless experience identical to existing screen-
shot tools. To allow semantic information to be automati­
cally propagated along with pixels, we choose to embed it
inside the image itself in standard metadata fields (Exif). If an
editing tool strips away this information, then it can also be
transmitted externally as a separate file. Although our proof­
of-concept implementation runs on Android, other platforms
such as Windows and MacOS have equivalent APIs and can
support similar implementations. The code is available here.1

Screenshot Capture
On Android, the UI hierarchy is available using the Accessibil­
ity Service API as a forest of nodes. This data structure allows
screen readers such as TalkBack to access the GUI. Each node
represents an interface element or a container used to organize
child elements. We start at the root window of the active app
and recursively proceed downwards. At each step, we store
the node’s text, description, bounds in the screen, class, state
information and other attributes important for accessibility.
This data is encoded as a JSON file. An example JSON can
be accessed in the provided code repository.

Embedding Metadata Inside Images
The obtained JSON is compressed and embedded inside the
Exif (exchangeable image file format) section of the screenshot
1https://gitlab.com/sujeathpareddy/xray

JPEG. Exif is normally used to store image metadata such as
the camera manufacturer and GPS coordinates. We use the
User Comments field to store our metadata.

Virtual Rendering
Android Accessibility API allows custom views that can simu­
late virtual children.2 This is used to facilitate accessibility of
complex views such as Calendars, which are generally drawn
onto a Bitmap instead of using the Android view system.

When the screenshot is opened, the metadata is extracted from
the Exif and the view hierarchy contained within is virtually
mounted below the image. This tricks the screen reader into
thinking the original interface is actually present. The advan­
tage of this approach is that Braille displays and interaction
techniques such as explore by touch would still work, even for
complex customized components. Furthermore, the alt-text
field of the ImageView is still present, allowing the author to
provide extra context to the screenshot.

USER EVALUATION
We performed a qualitative user study with 5 blind participants
(Table 3). Our goal was to understand the ease of use of our
prototype and its perceived fidelity to the source interface. We
took screenshots of mock apps including GUI (Figure 1), im­
ages, text, and tables (Figure 3). Participants were asked to
browse the screenshots and answer questions about them, e.g.,
is the “Stay awake” switch on or off (Figure 3c). Then, we
showed them the raw interface and asked them about differ­
ences they could perceive and general questions about the user
experience. They were asked to rate X-Ray along multiple
scales in Table 4.

Participants were able to use both the augmented screenshots
and the original interfaces. P4 found minor differences in the
Android Home Screen use case. X-Ray was not aware of more
advanced dynamic behavior of interfaces, such as announcing
the available actions for an app (e.g., uninstall, move). P3
noticed that controls in the Settings screen were not grouped
in the exact same way. This happened because our capturing
2https://developer.android.com/reference/android/view/
View.AccessibilityDelegate.html

https://gitlab.com/sujeathpareddy/xray
https://developer.android.com/reference/android/view/View.AccessibilityDelegate.html
https://developer.android.com/reference/android/view/View.AccessibilityDelegate.html

ID Gender Age Occupation Vision Level Hearing Smartphone Use Desktop Use
P1 Female 64 Retired Light perception, since 10 years old Normal iPhone, 9 years JAWS, 24 years
P2 Female 71 Retired Blind, since childhood Slight loss iPhone, 7.5 years JAWS, 20 years
P3 Male 66 Retired Blind, since birth Slight loss iPhone, 10 years JAWS, NVDA 24 years
P4 Female 34 Unemployed Blind, since birth Normal iPhone, 7 years JAWS, 20 years
P5 Female 77 Retired Light perception Normal iPhone, 2 years JAWS, 24 years

Table 3. Demographics of five blind participants in the user evaluation of X-Ray.

ID P1 P2 P3 P4 P5 Mean
Learnability 7 5 7 7 7 6.6
Comfort 7 4 7 6 7 6.2
Usefulness 7 5 7 5 6 6
Perceived Speed 7 3 7 4 7 5.6
Perceived Accuracy 6 4 6 7 7 6
Satisfaction 7 3 7 7 7 6.2

Table 4. Participants’ ratings on X-Ray. Ratings were along a Likert
scale of 1 to 7, 1 being extremely negative and 7 being extremely positive.

tool was not aware of the containing view group, which we
will address in the future. Nevertheless, P3 commented, “I
could still tell that it (the Stay Awake switch) was a switch
and that it was turned off.” P1 said, “I would definitely use it,
because it’s very frustrating you cannot access information
that you know is there ... I would like it built right into the
operating system, instead having to pull out a separate app.”

DISCUSSION AND FUTURE WORK

Design Requirements for Screen Reader Users
In our implementation, we focused on making the experience
of accessing screenshots as close to that of the original in­
terface as possible and did not investigate if this is the most
desirable thing to do. Design requirements for screen reader
users is important for future work.

Technical Limitations
Our current implementation of X-Ray uses a dedicated reader
to extract the embedded metadata and attach it to the Android
View hierarchy. A more seamless integration would allow both
desktop and mobile screen readers to access the embedded
metadata without opening another app. This would either

Figure 3. User study tasks for using X-Ray to access screenshots embed­
ded with additional metadata, including: GUI, images, text, and tables.

require modification to the source code of the screen reader
itself or use a plugin system such as those in NVDA or JAWS.

X-Ray currently cannot handle operations such as zooming
and rotation that may be performed by image editing tools.
While these tools may remove nodes that are out of the frame,
this may be addressed by storing region specific features in the
node hierarchy. When loaded, the screen reader can then detect
which nodes are now out of range and present the remaining.

Other limitations stem from the Android Accessibility API.
For example, our crawler cannot access background content
of the screen when there is modal content in the foreground
(e.g., a dialog box). Our method is also unaware of dynamic
behavior that may be added by developers. For example,
an announcement can be made in response to an element
becoming focused.

Accessibility of Graphical Plots
X-Ray currently does not support graphical charts and plots.
However, it is possible to modify plotting tools to embed
metadata into plots that can be accessed in a way similar to
GUIs. This metadata could then be rendered using sonification
techniques [6, 7], 3D printing [5], or other methods.

Privacy and Security
Embedding graphical metadata into screenshots can raise pri­
vacy concerns. Imagine a user takes a screenshot using X-Ray
and then crops out personal information. If the cropping tool
just copies the Exif data, private information may leak out.
While implementing this technology as a standard can help
solve the problem, backwards compatibility may remain an
issue and pose a barrier for adoption.

CONCLUSION
We introduced X-Ray, a system that captures and embeds the
underlying content semantics inside the Exif data of screen-
shots. Screen reader users were able to access the underlying
GUI when viewing the image. Since this data is automatically
stored when taking a screenshot, sighted users do not have to
make special efforts to make their images accessible. Since
most image processing tools support Exif, no special effort is
needed to ensure that it is propagated along with the image.

ACKNOWLEDGMENTS
This work has been supported by the National Science Foun­
dation (#IIS-1816012), Google, and the National Institute on
Disability, Independent Living, and Rehabilitation Research
(NIDILRR). We thank the participants who contributed to our
studies, and the reviewers for their valuable feedback and sug­
gestions. Special thanks to Patrick Carrington, Sven Mayer
and Amy Pavel for their help and support.

REFERENCES
1. Cynthia L. Bennett, Jane E, Martez E. Mott, Edward

Cutrell, and Meredith Ringel Morris. 2018. How Teens
with Visual Impairments Take, Edit, and Share Photos on
Social Media. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 76, 12
pages. DOI:http://dx.doi.org/10.1145/3173574.3173650

2.	 Jeffrey P. Bigham, Ryan S. Kaminsky, Richard E. Ladner,
Oscar M. Danielsson, and Gordon L. Hempton. 2006.
WebInSight:: Making Web Images Accessible. In
Proceedings of the 8th International ACM SIGACCESS
Conference on Computers and Accessibility (Assets ’06).
ACM, New York, NY, USA, 181–188. DOI:
http://dx.doi.org/10.1145/1168987.1169018

3. Yevgen Borodin, Jeffrey P. Bigham, Glenn Dausch, and
I. V. Ramakrishnan. 2010. More Than Meets the Eye: A
Survey of Screen-reader Browsing Strategies. In
Proceedings of the 2010 International Cross Disciplinary
Conference on Web Accessibility (W4A) (W4A ’10). ACM,
New York, NY, USA, Article 13, 10 pages. DOI:
http://dx.doi.org/10.1145/1805986.1806005

4. Erin Brady, Yu Zhong, and Jeffrey P. Bigham. 2015.
Creating Accessible PDFs for Conference Proceedings.
In Proceedings of the 12th Web for All Conference (W4A

’15). ACM, New York, NY, USA, Article 34, 4 pages.
DOI:http://dx.doi.org/10.1145/2745555.2746665

5. Craig Brown and Amy Hurst. 2012. VizTouch:
Automatically Generated Tactile Visualizations of
Coordinate Spaces. In Proceedings of the Sixth
International Conference on Tangible, Embedded and
Embodied Interaction (TEI ’12). ACM, New York, NY,
USA, 131–138. DOI:
http://dx.doi.org/10.1145/2148131.2148160

6. L.M. Brown, S.A. Brewster, S.A. Ramloll, R. Burton,

and B. Riedel. 2003a. Design guidelines for audio

presentation of graphs and tables. (2003).

http://eprints.gla.ac.uk/3196/

7. Lorna M Brown, Stephen A Brewster, SA Ramloll, R
Burton, and Beate Riedel. 2003b. Design guidelines for
audio presentation of graphs and tables. International
Conference on Auditory Display.

8. Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang
Xing, and Yang Liu. 2018. From UI Design Image to
GUI Skeleton: A Neural Machine Translator to Bootstrap
Mobile GUI Implementation. In Proceedings of the 40th
International Conference on Software Engineering (ICSE
’18). ACM, New York, NY, USA, 665–676. DOI:
http://dx.doi.org/10.1145/3180155.3180240

9. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In
Proceedings of the 30th Annual Symposium on User
Interface Software and Technology (UIST ’17).

10. Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In Proceedings

of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16). ACM, New York,
NY, USA, 767–776. DOI:
http://dx.doi.org/10.1145/2984511.2984581

11. Morgan Dixon and James Fogarty. 2010. Prefab:
Implementing Advanced Behaviors Using Pixel-based
Reverse Engineering of Interface Structure. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 1525–1534. DOI:
http://dx.doi.org/10.1145/1753326.1753554

12. Morgan Dixon, Gierad Laput, and James Fogarty. 2014.
Pixel-based Methods for Widget State and Style in a
Runtime Implementation of Sliding Widgets. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 2231–2240. DOI:
http://dx.doi.org/10.1145/2556288.2556979

13. Christin Engel, Denise Bornschein, and Gerhard Weber.
2018. Accessible Screenshots for Blind and Visually
Impaired People. In Mensch und Computer 2018 -
Tagungsband, Raimund Dachselt and Gerhard Weber
(Eds.). Gesellschaft für Informatik e.V., Bonn.

14. Cole Gleason, Patrick Carrington, Cameron Cassidy,
Meredith Ringel Morris, Kris M. Kitani, and Jeffrey P.
Bigham. 2019. "It’s Almost Like They’re Trying to Hide
It": How User-Provided Image Descriptions Have Failed
to Make Twitter Accessible. In The World Wide Web
Conference (WWW ’19). ACM, New York, NY, USA,
549–559. DOI:
http://dx.doi.org/10.1145/3308558.3313605

15.	 Greg Guest, Kathleen M MacQueen, and Emily E Namey.
2011. Applied thematic analysis. Sage Publications.

16. Darren Guinness, Edward Cutrell, and Meredith Ringel
Morris. 2018. Caption Crawler: Enabling Reusable
Alternative Text Descriptions Using Reverse Image
Search. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM,
New York, NY, USA, Article 518, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174092

17.	 Anhong Guo, Junhan Kong, Michael Rivera, Frank F. Xu,
and Jeffrey P. Bigham. 2019. StateLens: A Reverse
Engineering Solution for Making Existing Dynamic
Touchscreens Accessible. In Proceedings of the 32th
Annual Symposium on User Interface Software and
Technology (UIST ’19). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/3332165.3347873

18. Meredith Ringel Morris, Annuska Zolyomi, Catherine
Yao, Sina Bahram, Jeffrey P. Bigham, and Shaun K. Kane.
2016. "With Most of It Being Pictures Now, I Rarely Use
It": Understanding Twitter’s Evolving Accessibility to
Blind Users. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16).
ACM, New York, NY, USA, 5506–5516. DOI:
http://dx.doi.org/10.1145/2858036.2858116

http://dx.doi.org/10.1145/3173574.3173650
http://dx.doi.org/10.1145/1168987.1169018
http://dx.doi.org/10.1145/1805986.1806005
http://dx.doi.org/10.1145/2745555.2746665
http://dx.doi.org/10.1145/2148131.2148160
http://eprints.gla.ac.uk/3196/
http://dx.doi.org/10.1145/3180155.3180240
http://dx.doi.org/10.1145/2984511.2984581
http://dx.doi.org/10.1145/1753326.1753554
http://dx.doi.org/10.1145/2556288.2556979
http://dx.doi.org/10.1145/3308558.3313605
http://dx.doi.org/10.1145/3173574.3174092
http://dx.doi.org/10.1145/3332165.3347873
http://dx.doi.org/10.1145/2858036.2858116

19. Ab Shaqoor Nengroo and K. S. Kuppusamy. 2018.
Accessible images (AIMS): a model to build
self-describing images for assisting screen reader users.
Universal Access in the Information Society 17, 3 (01
Aug 2018), 607–619. DOI:
http://dx.doi.org/10.1007/s10209-017-0607-z

20. Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and
Jacob O. Wobbrock. 2018. Examining Image-Based
Button Labeling for Accessibility in Android Apps
Through Large-Scale Analysis. In Proceedings of the
20th International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’18). ACM, New
York, NY, USA, 119–130. DOI:
http://dx.doi.org/10.1145/3234695.3236364

21.	 Elliot Salisbury, Ece Kamar, and Meredith Ringel Morris.
2017. Toward scalable social alt text: Conversational
crowdsourcing as a tool for refining vision-to-language
technology for the blind. In Fifth AAAI Conference on
Human Computation and Crowdsourcing.

22. Luis von Ahn, Shiry Ginosar, Mihir Kedia, Ruoran Liu,
and Manuel Blum. 2006. Improving Accessibility of the

Web with a Computer Game. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’06). ACM, New York, NY, USA, 79–82.
DOI:http://dx.doi.org/10.1145/1124772.1124785

23. Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie
Schiller. 2017. Automatic Alt-text: Computer-generated
Image Descriptions for Blind Users on a Social Network
Service. In Proceedings of the 2017 ACM Conference on
Computer Supported Cooperative Work and Social
Computing (CSCW ’17). ACM, New York, NY, USA,
1180–1192. DOI:
http://dx.doi.org/10.1145/2998181.2998364

24. Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James
Fogarty, and Jacob O. Wobbrock. 2017. Interaction
Proxies for Runtime Repair and Enhancement of Mobile
Application Accessibility. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA,
6024–6037. DOI:
http://dx.doi.org/10.1145/3025453.3025846

http://dx.doi.org/10.1007/s10209-017-0607-z
http://dx.doi.org/10.1145/3234695.3236364
http://dx.doi.org/10.1145/1124772.1124785
http://dx.doi.org/10.1145/2998181.2998364
http://dx.doi.org/10.1145/3025453.3025846

	Introduction
	Related Work
	Alternative Text
	Reverse Engineering of Interfaces
	Analysis of Accessibility

	Academic Proceedings Analysis
	Interview Study with Researchers
	Screenshots are simply convenient
	Researchers pick tools based on several factors

	Technical Implementation
	Screenshot Capture
	Embedding Metadata Inside Images
	Virtual Rendering

	User Evaluation
	Discussion and Future Work
	Design Requirements for Screen Reader Users
	Technical Limitations
	Accessibility of Graphical Plots
	Privacy and Security

	Conclusion
	Acknowledgments
	References

